Assessment of CT to CBCT contour mapping for radiomic feature analysis in prostate cancer
Abstract This study provides a quantitative assessment of the accuracy of a commercially available deformable image registration (DIR) algorithm to automatically generate prostate contours and additionally investigates the robustness of radiomic features to differing contours. Twenty-eight prostate...
Guardado en:
Autores principales: | Ryder M. Schmidt, Rodrigo Delgadillo, John C. Ford, Kyle R. Padgett, Matthew Studenski, Matthew C. Abramowitz, Benjamin Spieler, Yihang Xu, Fei Yang, Nesrin Dogan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d1799194bbfe4db99c190917f5da1c0a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reproducibility and Repeatability of CBCT-Derived Radiomics Features
por: Hao Wang, et al.
Publicado: (2021) -
Robustness of radiomic features in CT images with different slice thickness, comparing liver tumour and muscle
por: Lorena Escudero Sanchez, et al.
Publicado: (2021) -
Cone Beam CT (CBCT) Based Synthetic
CT Generation Using Deep Learning
Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy
por: Xudong Xue PhD, et al.
Publicado: (2021) -
Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal Adenocarcinoma
por: Farzad Khalvati, et al.
Publicado: (2019) -
CT based radiomic approach on first line pembrolizumab in lung cancer
por: Marta Zerunian, et al.
Publicado: (2021)