Extracting diagnoses and investigation results from unstructured text in electronic health records by semi-supervised machine learning.
<h4>Background</h4>Electronic health records are invaluable for medical research, but much of the information is recorded as unstructured free text which is time-consuming to review manually.<h4>Aim</h4>To develop an algorithm to identify relevant free texts automatically bas...
Guardado en:
Autores principales: | Zhuoran Wang, Anoop D Shah, A Rosemary Tate, Spiros Denaxas, John Shawe-Taylor, Harry Hemingway |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d17e9e6b6da44b479e895c355a40dd42 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multiscale classification of heart failure phenotypes by unsupervised clustering of unstructured electronic medical record data
por: Tasha Nagamine, et al.
Publicado: (2020) -
Semi-Supervised Training for Positioning of Welding Seams
por: Wenbin Zhang, et al.
Publicado: (2021) -
Numerical approach for unstructured quantum key distribution
por: Patrick J. Coles, et al.
Publicado: (2016) -
Full body virtual try‐on with semi‐self‐supervised learning
por: Hyug‐Jae Lee, et al.
Publicado: (2021) -
Malware detection based on semi-supervised learning with malware visualization
por: Tan Gao, et al.
Publicado: (2021)