Ensemble Machine Learning Model to Predict SARS-CoV-2 T-Cell Epitopes as Potential Vaccine Targets
An ongoing outbreak of coronavirus disease 2019 (COVID-19), caused by a single-stranded RNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a worldwide pandemic that continues to date. Vaccination has proven to be the most effective technique, by far, for the tr...
Guardado en:
Autores principales: | Syed Nisar Hussain Bukhari, Amit Jain, Ehtishamul Haq, Abolfazl Mehbodniya, Julian Webber |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d1984a828cd54d1c86ea96782cdcf48f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicted Epitope Abundance Supports Vaccine-Induced Cytotoxic Protection Against SARS-CoV-2 Variants of Concern
por: Antonio J. Martín-Galiano, et al.
Publicado: (2021) -
EpiCurator: an immunoinformatic workflow to predict and prioritize SARS-CoV-2 epitopes
por: Cristina S. Ferreira, et al.
Publicado: (2021) -
Computer simulation in the development of vaccines against covid-19 based on the hla-system antigens
por: Dmitry A. Vologzhanin, et al.
Publicado: (2021) -
COVID-19 Breakthrough Infections and Transmission Risk: Real-World Data Analyses from Germany’s Largest Public Health Department (Cologne)
por: Lea Hsu, et al.
Publicado: (2021) -
Development of an Inactivated Vaccine against SARS CoV-2
por: Shaikh Terkis Islam Pavel, et al.
Publicado: (2021)