Do It by Yourself: An Instructional Derivation of the Laplacian Operator in Spherical Polar Coordinates
For scientists and engineers, the Laplacian operator is a fundamental tool that has made it possible to carry out important frontier studies involving wave propagation, potential theory, heat conduction, the distribution of stresses in a deformable solid and quantum mechanics. Knowing, understanding...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d1a5c81885534a2e9462736790204907 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | For scientists and engineers, the Laplacian operator is a fundamental tool that has made it possible to carry out important frontier studies involving wave propagation, potential theory, heat conduction, the distribution of stresses in a deformable solid and quantum mechanics. Knowing, understanding, and manipulating the Laplacian operator allows us to tackle complex and exciting physics, chemistry, and engineering problems. In this paper, contained in the Special Issue “Mathematics as the M in STEM Education”, we present an instructional derivation of the Laplacian operator in spherical coordinates. Our derivation is self-contained and employs well-known mathematical concepts used in all science, technology, engineering, and mathematics (STEM) disciplines. Our lengthy but straightforward procedure shows that this fundamental tool in mathematics is not intractable but accessible to anyone who studies any of the STEM disciplines. We consider that this work may be helpful for students and teachers who wish to discuss the derivation of this vital tool from an elementary approach in their courses. |
---|