Memory-Based Pruning of Deep Neural Networks for IoT Devices Applied to Flood Detection
Automatic flood detection may be an important component for triggering damage control systems and minimizing the risk of social or economic impacts caused by flooding. Riverside images from regular cameras are a widely available resource that can be used for tackling this problem. Nevertheless, stat...
Guardado en:
Autores principales: | Francisco Erivaldo Fernandes Junior, Luis Gustavo Nonato, Caetano Mazzoni Ranieri, Jó Ueyama |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d1c0e36827e74069b0d998d7eeaacc52 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Software Design and Experimental Evaluation of a Reduced AES for IoT Applications
por: Malik Qasaimeh, et al.
Publicado: (2021) -
Syndrome Prune Belly
por: Pereira,Jaime, et al.
Publicado: (1979) -
Orchestrating Heterogeneous Devices and AI Services as Virtual Sensors for Secure Cloud-Based IoT Applications
por: Sebastian Alberternst, et al.
Publicado: (2021) -
Industry Platforms as Facilitators of Disruptive IoT Innovations
por: Ionut Pirvan,Cristian, et al.
Publicado: (2019) -
Recognition of the Cybersecurity State of IoT devices
por: M.E. Sukhoparov, et al.
Publicado: (2021)