Application of feed forward and recurrent neural networks in simulation of left ventricular mechanics
Abstract An understanding of left ventricle (LV) mechanics is fundamental for designing better preventive, diagnostic, and treatment strategies for improved heart function. Because of the costs of clinical and experimental studies to treat and understand heart function, respectively, in-silico model...
Guardado en:
Autores principales: | Yaghoub Dabiri, Alex Van der Velden, Kevin L. Sack, Jenny S. Choy, Julius M. Guccione, Ghassan S. Kassab |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d1e753bc8d8d4b1686bf77a7c7d2985d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Transmural Distribution of Coronary Perfusion and Myocardial Work Density Due to Alterations in Ventricular Loading, Geometry and Contractility
por: Lei Fan, et al.
Publicado: (2021) -
Effects of Cannabis on Cardiovascular System: The Good, the Bad, and the Many Unknowns
por: Ali E. Dabiri, et al.
Publicado: (2021) -
Electrical Load Demand Forecasting Using Feed-Forward Neural Networks
por: Eduardo Machado, et al.
Publicado: (2021) -
Ensemble Feed-Forward Neural Network and Support Vector Machine for Prediction of Multiclass Malaria Infection
por: Opeyemi Aderiike Abisoye, et al.
Publicado: (2021) -
Left ventricular noncompaction cardiomyopathy
por: Amer Hawatmeh, et al.
Publicado: (2017)