Dyeing of cotton fabric materials with biogenic gold nanoparticles
Abstract The present work aimed at synthesizing gold nanoparticles in a biological method employing fruit peel waste dumped in the environment. The peels of Garcinia mangostana (Mangostan), were collected from the nearby tourist spot during the season. The collected fruit peels were washed, dried, p...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d1f274e3ae684c65bd62c2fc20959aa2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The present work aimed at synthesizing gold nanoparticles in a biological method employing fruit peel waste dumped in the environment. The peels of Garcinia mangostana (Mangostan), were collected from the nearby tourist spot during the season. The collected fruit peels were washed, dried, powder and extracted by using boiling water and acetone. The precipitated extract was dried and powdered for further use. The dried and powdered peel extract was added to the gold solution and boiled to 80 °C and the color change is observed. The color change indicates the completion of the synthesis of gold nanoparticles. The effect of pH, gold ion concentration, peel extract powder concentration, and the temperature was tested by varying the parameters. The biosynthesized nanoparticles were characterized using the UV–Vis spectrophotometer to identify the surface plasmon resonance peaks corresponding to gold nanoparticles. The bio-moieties responsible for the synthesis of gold nanoparticles were identified using the Fourier Transform Infra-Red Spectroscopy. The crystalline nature was detected by using an X-Ray Diffractometer. Atomic Force Microscope viewed the 3D surface image of the gold nanoparticle. The shape and morphology of the nanoparticle were identified by using a Field Emission Scanning Electron Microscope. The active compounds for gold nanoparticle synthesis were identified using Gas Chromatography-Mass Spectrometry. The gold nanoparticle was synthesized in various colors and used for dyeing cotton fabrics. The dyed cotton materials were exposed to various stress conditions to determine the color fastening. |
---|