On quasilinear elliptic problems with finite or infinite potential wells

We consider quasilinear elliptic problems of the form −div(ϕ(∣∇u∣)∇u)+V(x)ϕ(∣u∣)u=f(u),u∈W1,Φ(RN),-{\rm{div}}\hspace{0.33em}(\phi \left(| \nabla u| )\nabla u)+V\left(x)\phi \left(| u| )u=f\left(u),\hspace{1.0em}u\in {W}^{1,\Phi }\left({{\mathbb{R}}}^{N}), where ϕ\phi and ff satisfy suitable conditi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Liu Shibo
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/d207967a08694081a99e2a46891bbc0b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d207967a08694081a99e2a46891bbc0b
record_format dspace
spelling oai:doaj.org-article:d207967a08694081a99e2a46891bbc0b2021-12-05T14:10:53ZOn quasilinear elliptic problems with finite or infinite potential wells2391-545510.1515/math-2021-0053https://doaj.org/article/d207967a08694081a99e2a46891bbc0b2021-08-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0053https://doaj.org/toc/2391-5455We consider quasilinear elliptic problems of the form −div(ϕ(∣∇u∣)∇u)+V(x)ϕ(∣u∣)u=f(u),u∈W1,Φ(RN),-{\rm{div}}\hspace{0.33em}(\phi \left(| \nabla u| )\nabla u)+V\left(x)\phi \left(| u| )u=f\left(u),\hspace{1.0em}u\in {W}^{1,\Phi }\left({{\mathbb{R}}}^{N}), where ϕ\phi and ff satisfy suitable conditions. The positive potential V∈C(RN)V\in C\left({{\mathbb{R}}}^{N}) exhibits a finite or infinite potential well in the sense that V(x)V\left(x) tends to its supremum V∞≤+∞{V}_{\infty }\le +\infty as ∣x∣→∞| x| \to \infty . Nontrivial solutions are obtained by variational methods. When V∞=+∞{V}_{\infty }=+\infty , a compact embedding from a suitable subspace of W1,Φ(RN){W}^{1,\Phi }\left({{\mathbb{R}}}^{N}) into LΦ(RN){L}^{\Phi }\left({{\mathbb{R}}}^{N}) is established, which enables us to get infinitely many solutions for the case that ff is odd. For the case that V(x)=λa(x)+1V\left(x)=\lambda a\left(x)+1 exhibits a steep potential well controlled by a positive parameter λ\lambda , we get nontrivial solutions for large λ\lambda .Liu ShiboDe Gruyterarticleorlicz-sobolev spaceφ-laplaciancritical points(ps)c sequence35j2035j6035j70MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 971-989 (2021)
institution DOAJ
collection DOAJ
language EN
topic orlicz-sobolev space
φ-laplacian
critical points
(ps)c sequence
35j20
35j60
35j70
Mathematics
QA1-939
spellingShingle orlicz-sobolev space
φ-laplacian
critical points
(ps)c sequence
35j20
35j60
35j70
Mathematics
QA1-939
Liu Shibo
On quasilinear elliptic problems with finite or infinite potential wells
description We consider quasilinear elliptic problems of the form −div(ϕ(∣∇u∣)∇u)+V(x)ϕ(∣u∣)u=f(u),u∈W1,Φ(RN),-{\rm{div}}\hspace{0.33em}(\phi \left(| \nabla u| )\nabla u)+V\left(x)\phi \left(| u| )u=f\left(u),\hspace{1.0em}u\in {W}^{1,\Phi }\left({{\mathbb{R}}}^{N}), where ϕ\phi and ff satisfy suitable conditions. The positive potential V∈C(RN)V\in C\left({{\mathbb{R}}}^{N}) exhibits a finite or infinite potential well in the sense that V(x)V\left(x) tends to its supremum V∞≤+∞{V}_{\infty }\le +\infty as ∣x∣→∞| x| \to \infty . Nontrivial solutions are obtained by variational methods. When V∞=+∞{V}_{\infty }=+\infty , a compact embedding from a suitable subspace of W1,Φ(RN){W}^{1,\Phi }\left({{\mathbb{R}}}^{N}) into LΦ(RN){L}^{\Phi }\left({{\mathbb{R}}}^{N}) is established, which enables us to get infinitely many solutions for the case that ff is odd. For the case that V(x)=λa(x)+1V\left(x)=\lambda a\left(x)+1 exhibits a steep potential well controlled by a positive parameter λ\lambda , we get nontrivial solutions for large λ\lambda .
format article
author Liu Shibo
author_facet Liu Shibo
author_sort Liu Shibo
title On quasilinear elliptic problems with finite or infinite potential wells
title_short On quasilinear elliptic problems with finite or infinite potential wells
title_full On quasilinear elliptic problems with finite or infinite potential wells
title_fullStr On quasilinear elliptic problems with finite or infinite potential wells
title_full_unstemmed On quasilinear elliptic problems with finite or infinite potential wells
title_sort on quasilinear elliptic problems with finite or infinite potential wells
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/d207967a08694081a99e2a46891bbc0b
work_keys_str_mv AT liushibo onquasilinearellipticproblemswithfiniteorinfinitepotentialwells
_version_ 1718371630247313408