Rear-End Crash Risk Analysis considering Drivers’ Visual Perception and Traffic Flow Uncertainty: A Hierarchical Hybrid Bayesian Network Approach
Rear-end crashes or crash risk is widely recognized as safety-critical state of vehicles under comprehensive conditions. This study investigated the association between traffic flow uncertainty, drivers’ visual perception, car-following behavior, roadway and vehicular characteristics, and rear-end c...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d214e17d7b394898bb5dd1920d11c45c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Rear-end crashes or crash risk is widely recognized as safety-critical state of vehicles under comprehensive conditions. This study investigated the association between traffic flow uncertainty, drivers’ visual perception, car-following behavior, roadway and vehicular characteristics, and rear-end crash risk variation and compared the crash risk variation prediction with and without specific flow-level data. Two datasets comprising 5055 individual vehicles in car-following state were collected through on-road experiments on two freeways in China. A hierarchical hybrid BN model approach was proposed to capture the association between drivers’ visual perception, traffic flow uncertainty, and rear-end crash risk variation. Results show that (1) the BN model with flow-level data outperformed the BN model without flow-level data and could predict 85.3% of the cases of crash risk decrease, with a false alarm rate of 21.4%; (2) the hierarchical hybrid BN models showed plausible spatial transferability in predicting crash risk variation; and (3) the incorporation of specific flow-level variables and data greatly benefited the successful identification of rear-end crash risk variations. The findings of this study suggest that rear-end crash risk is inherently associated with both individual driving behaviors and traffic flow uncertainty, and appropriate visual perceptual information could compensate for crash risk and improve safety. |
---|