Mapping cellular-scale internal mechanics in 3D tissues with thermally responsive hydrogel probes
Local mechanical properties are important to cellular function; but conventional measurement techniques are limited in intact, living, 3D tissues. Here, the authors report on swellable hydrogel microparticles to monitor mechanical properties in situ via a temperature change.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d218733b67634f729d80644e961dd6ce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d218733b67634f729d80644e961dd6ce |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d218733b67634f729d80644e961dd6ce2021-12-02T15:15:24ZMapping cellular-scale internal mechanics in 3D tissues with thermally responsive hydrogel probes10.1038/s41467-020-18469-72041-1723https://doaj.org/article/d218733b67634f729d80644e961dd6ce2020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18469-7https://doaj.org/toc/2041-1723Local mechanical properties are important to cellular function; but conventional measurement techniques are limited in intact, living, 3D tissues. Here, the authors report on swellable hydrogel microparticles to monitor mechanical properties in situ via a temperature change.Stephanie MokSara Al HabyanCharles LedouxWontae LeeKatherine N. MacDonaldLuke McCaffreyChristopher MoraesNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Stephanie Mok Sara Al Habyan Charles Ledoux Wontae Lee Katherine N. MacDonald Luke McCaffrey Christopher Moraes Mapping cellular-scale internal mechanics in 3D tissues with thermally responsive hydrogel probes |
description |
Local mechanical properties are important to cellular function; but conventional measurement techniques are limited in intact, living, 3D tissues. Here, the authors report on swellable hydrogel microparticles to monitor mechanical properties in situ via a temperature change. |
format |
article |
author |
Stephanie Mok Sara Al Habyan Charles Ledoux Wontae Lee Katherine N. MacDonald Luke McCaffrey Christopher Moraes |
author_facet |
Stephanie Mok Sara Al Habyan Charles Ledoux Wontae Lee Katherine N. MacDonald Luke McCaffrey Christopher Moraes |
author_sort |
Stephanie Mok |
title |
Mapping cellular-scale internal mechanics in 3D tissues with thermally responsive hydrogel probes |
title_short |
Mapping cellular-scale internal mechanics in 3D tissues with thermally responsive hydrogel probes |
title_full |
Mapping cellular-scale internal mechanics in 3D tissues with thermally responsive hydrogel probes |
title_fullStr |
Mapping cellular-scale internal mechanics in 3D tissues with thermally responsive hydrogel probes |
title_full_unstemmed |
Mapping cellular-scale internal mechanics in 3D tissues with thermally responsive hydrogel probes |
title_sort |
mapping cellular-scale internal mechanics in 3d tissues with thermally responsive hydrogel probes |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/d218733b67634f729d80644e961dd6ce |
work_keys_str_mv |
AT stephaniemok mappingcellularscaleinternalmechanicsin3dtissueswiththermallyresponsivehydrogelprobes AT saraalhabyan mappingcellularscaleinternalmechanicsin3dtissueswiththermallyresponsivehydrogelprobes AT charlesledoux mappingcellularscaleinternalmechanicsin3dtissueswiththermallyresponsivehydrogelprobes AT wontaelee mappingcellularscaleinternalmechanicsin3dtissueswiththermallyresponsivehydrogelprobes AT katherinenmacdonald mappingcellularscaleinternalmechanicsin3dtissueswiththermallyresponsivehydrogelprobes AT lukemccaffrey mappingcellularscaleinternalmechanicsin3dtissueswiththermallyresponsivehydrogelprobes AT christophermoraes mappingcellularscaleinternalmechanicsin3dtissueswiththermallyresponsivehydrogelprobes |
_version_ |
1718387538386747392 |