Photo-degradation of Methylene Orange by zinc-sulfide nanoparticles synthesized via hydrothermal method
Background and Objective: In the present research, the synthesis and characterization of ZnS nanoparticles in zinc blend crystallite phase via hydrothermal method were reported. Advanced oxidation processes using nanophotocatalysts are one of the most efficient methods for removing the dyes with com...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | FA |
Publicado: |
Tehran University of Medical Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d21e53a4b42a4374ba6c78f0d84bf697 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Background and Objective: In the present research, the synthesis and characterization of ZnS nanoparticles in zinc blend crystallite phase via hydrothermal method were reported. Advanced oxidation processes using nanophotocatalysts are one of the most efficient methods for removing the dyes with complex organic compounds from textile and industrial wastewaters. The photocatalytic performance of nanoparticles is drastically affected by their structural and optical properties. One of the most important features affecting the photocatalytic degradation of nanoparticles is their optical bandgap width, which is an important factor in the radiant photons in the visible and UV region and the production of active radicals to destroy the complex carbon pollutants. The optical bandgap width, like other properties of nanoparticles is affected by three important geometric parameters, including particle size, dimension and shape. It is also a function of synthetic chemistry, i.e. the precursors and the fabrication methods. The aim of the present study was to investigate the nanostructure of zinc-sulfide synthesized nanoparticles, optical properties and photocatalytic effect on the degradation of Methylene Orange dye.
Materials and Methods: The experiment of degradation of dye consisted of 70 mg of synthesized nanoparticles in 100 mL of dye solution containing 3.75 ppm of Methylene Orange dye at pH = 5.5. The experimental steps were repeated three times. Nanostructure characterization of three-dimension ZnS nanoparticles was specified by X-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, transmission electron microscopy, Furrier transform infrared, ultraviolet-visible spectroscopy and N2 adsorption-desorption.
Results: The lattice characteristics such as density, specific surface area, size, strain, stress and deformation energy density are specified using Williamson-Hall (W-H) and Halder-Wagner (H-W) analysis. The photocatalytic degradation rate (k) of Methylene Orange was calculated to be 0.052 1/min, whilst after 60 minutes about 95% of the dye was photodegraded. The N2 adsorption-desorption calculations determined the mean pore diameter, specific surface area (SBET) and total porosity volume as 20.69 nm, 19.12 m2/g and 0.065 m3/g, respectively. The bandgap of fabrication ZnS has been evaluated from the Tauc's equation to be 3.47 eV. Compared with ZnS nanoparticles made by the hydrothermal method in the wurtzite crystallite phase (sample 2), the synthesized sample (sample 1) shows less lattice strain and stress, less crystallite size and also revealed the higher photocatalytic activity.
Conclusion: The pure zinc-sulfide nanoparticles without metal or ceramic dopants in the cubic zinc-blend crystallite phase are synthesized using the hydrothermal method. The precursors used in the synthesis of zinc-sulfide nanoparticles include zinc chloride and thioacetamide in the presence of oleic acid as a collecting agent. High photocatalytic activity of ZnS nanoparticles was confirmed by the degradation or dechlorination of Methylene Orange solution under UV light irradiation. Compared to similar studies, the results show that reducing the optical bandgap from 3.84 eV to 3.47 eV increases the degradation rate from 0.031 to 0.052. In this study, it was shown that synthesized zinc-sulfide nanoparticles by hydrothermal method, was able to decrease optical gap bandwidth and subsequently increased photocatalytic activity. |
---|