Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes
An analytical formulation, referred to as conjugated Graetz problems, is developed to predict the temperature distribution and Nusselt numbers for the power-law fluid flowing in a double-pass concentric circular heat exchanger under sinusoidal wall fluxes. A new design of inserting an impermeable sh...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d22d2f5b2ec64f2396de5c997d16a238 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d22d2f5b2ec64f2396de5c997d16a238 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d22d2f5b2ec64f2396de5c997d16a2382021-11-09T02:25:40ZConjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes10.3934/mbe.20212821551-0018https://doaj.org/article/d22d2f5b2ec64f2396de5c997d16a2382021-06-01T00:00:00Zhttps://www.aimspress.com/article/doi/10.3934/mbe.2021282https://doaj.org/toc/1551-0018An analytical formulation, referred to as conjugated Graetz problems, is developed to predict the temperature distribution and Nusselt numbers for the power-law fluid flowing in a double-pass concentric circular heat exchanger under sinusoidal wall fluxes. A new design of inserting an impermeable sheet into a concentric tube, in parallel, to conduct recycling double-pass operations has been studied theoretically in the fully developed region, resulting in substantial improvements in the performance of heat exchanger device. The analytical solution was derived using the complex functions by transforming the boundary value problem into ordinary differential equations with the aid of the Frobenius method. The influences of power-law index and impermeable-sheet position on average Nusselt numbers with various designs and operating parameters are also delineated. The theoretical predictions show that the heat transfer efficiency is considerably improved through operating the double-pass device compared to via a single-pass circular heat exchanger (where an impermeable sheet is not inserted). The economic feasibility of operating double-pass concentric circular heat exchanger for power-law fluids is exemplified by the ratio of the heat-transfer efficiency enhancement and the increment in power consumption. The double-pass effect from increasing the convective heat-transfer coefficient can compensate for the rise in power consumption, which serves as important economic advantage of this design.Chii-Dong Ho Gwo-Geng LinThiam Leng ChewLi-Pang LinAIMS Pressarticlepower-law fluidssinusoidal wall fluxesconcentric circular heat exchangersconjugated graetz problemBiotechnologyTP248.13-248.65MathematicsQA1-939ENMathematical Biosciences and Engineering, Vol 18, Iss 5, Pp 5592-5613 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
power-law fluids sinusoidal wall fluxes concentric circular heat exchangers conjugated graetz problem Biotechnology TP248.13-248.65 Mathematics QA1-939 |
spellingShingle |
power-law fluids sinusoidal wall fluxes concentric circular heat exchangers conjugated graetz problem Biotechnology TP248.13-248.65 Mathematics QA1-939 Chii-Dong Ho Gwo-Geng Lin Thiam Leng Chew Li-Pang Lin Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes |
description |
An analytical formulation, referred to as conjugated Graetz problems, is developed to predict the temperature distribution and Nusselt numbers for the power-law fluid flowing in a double-pass concentric circular heat exchanger under sinusoidal wall fluxes. A new design of inserting an impermeable sheet into a concentric tube, in parallel, to conduct recycling double-pass operations has been studied theoretically in the fully developed region, resulting in substantial improvements in the performance of heat exchanger device. The analytical solution was derived using the complex functions by transforming the boundary value problem into ordinary differential equations with the aid of the Frobenius method. The influences of power-law index and impermeable-sheet position on average Nusselt numbers with various designs and operating parameters are also delineated. The theoretical predictions show that the heat transfer efficiency is considerably improved through operating the double-pass device compared to via a single-pass circular heat exchanger (where an impermeable sheet is not inserted). The economic feasibility of operating double-pass concentric circular heat exchanger for power-law fluids is exemplified by the ratio of the heat-transfer efficiency enhancement and the increment in power consumption. The double-pass effect from increasing the convective heat-transfer coefficient can compensate for the rise in power consumption, which serves as important economic advantage of this design. |
format |
article |
author |
Chii-Dong Ho Gwo-Geng Lin Thiam Leng Chew Li-Pang Lin |
author_facet |
Chii-Dong Ho Gwo-Geng Lin Thiam Leng Chew Li-Pang Lin |
author_sort |
Chii-Dong Ho |
title |
Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes |
title_short |
Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes |
title_full |
Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes |
title_fullStr |
Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes |
title_full_unstemmed |
Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes |
title_sort |
conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes |
publisher |
AIMS Press |
publishDate |
2021 |
url |
https://doaj.org/article/d22d2f5b2ec64f2396de5c997d16a238 |
work_keys_str_mv |
AT chiidongho conjugatedheattransferofpowerlawfluidsindoublepassconcentriccircularheatexchangerswithsinusoidalwallfluxes AT gwogenglin conjugatedheattransferofpowerlawfluidsindoublepassconcentriccircularheatexchangerswithsinusoidalwallfluxes AT thiamlengchew conjugatedheattransferofpowerlawfluidsindoublepassconcentriccircularheatexchangerswithsinusoidalwallfluxes AT lipanglin conjugatedheattransferofpowerlawfluidsindoublepassconcentriccircularheatexchangerswithsinusoidalwallfluxes |
_version_ |
1718441425928978432 |