FlavorGraph: a large-scale food-chemical graph for generating food representations and recommending food pairings
Abstract Food pairing has not yet been fully pioneered, despite our everyday experience with food and the large amount of food data available on the web. The complementary food pairings discovered thus far created by the intuition of talented chefs, not by scientific knowledge or statistical learnin...
Guardado en:
Autores principales: | Donghyeon Park, Keonwoo Kim, Seoyoon Kim, Michael Spranger, Jaewoo Kang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d244bc59e1dd43bd8adf781c3aed2da9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dry Pet Food Flavor Enhancers and Their Impact on Palatability: A Review
por: Shilpa S. Samant, et al.
Publicado: (2021) - Journal of excipients and food chemicals
-
Unsupervised generative and graph representation learning for modelling cell differentiation
por: Ioana Bica, et al.
Publicado: (2020) -
Subtle Differences in the Representation of Consumer Dynamics Have Large Effects in Marine Food Web Models
por: Kevin J. Flynn, et al.
Publicado: (2021) -
Plant diversity alters the representation of motifs in food webs
por: Darren P. Giling, et al.
Publicado: (2019)