Spatial Prediction of Agrochemical Properties on the Scale of a Single Field Using Machine Learning Methods Based on Remote Sensing Data
Creating accurate digital maps of the agrochemical properties of soils on a field scale with a limited data set is a problem that slows down the introduction of precision farming. The use of machine learning methods based on the use of direct and indirect predictors of spatial changes in the agroche...
Enregistré dans:
Auteurs principaux: | Ilnas Sahabiev, Elena Smirnova, Kamil Giniyatullin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d24790a9e76a4a05b5f6f30e817209e3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Potential utilization of satellite remote sensing for field-based agricultural studies
par: Keiji Jindo, et autres
Publié: (2021) -
Simplified and Hybrid Remote Sensing-Based Delineation of Management Zones for Nitrogen Variable Rate Application in Wheat
par: Mohammad Rokhafrouz, et autres
Publié: (2021) -
Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey
par: Jia Liu, et autres
Publié: (2021) -
Using Time-Series Remote Sensing Images in Monitoring the Spatial–Temporal Dynamics of LULC in the Msimbazi Basin, Tanzania
par: Herrieth Machiwa, et autres
Publié: (2021) - Remote sensing