Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning

High-quality gRNA activity data is needed for accurate on-target efficiency predictions. Here the authors generate activity data for over 10,000 gRNA and build a deep learning model CRISPRon for improved performance predictions.

Guardado en:
Detalles Bibliográficos
Autores principales: Xi Xiang, Giulia I. Corsi, Christian Anthon, Kunli Qu, Xiaoguang Pan, Xue Liang, Peng Han, Zhanying Dong, Lijun Liu, Jiayan Zhong, Tao Ma, Jinbao Wang, Xiuqing Zhang, Hui Jiang, Fengping Xu, Xin Liu, Xun Xu, Jian Wang, Huanming Yang, Lars Bolund, George M. Church, Lin Lin, Jan Gorodkin, Yonglun Luo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/d2630a00271e4fa5a1f663c1d03d658b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d2630a00271e4fa5a1f663c1d03d658b
record_format dspace
spelling oai:doaj.org-article:d2630a00271e4fa5a1f663c1d03d658b2021-12-02T15:00:50ZEnhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning10.1038/s41467-021-23576-02041-1723https://doaj.org/article/d2630a00271e4fa5a1f663c1d03d658b2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23576-0https://doaj.org/toc/2041-1723High-quality gRNA activity data is needed for accurate on-target efficiency predictions. Here the authors generate activity data for over 10,000 gRNA and build a deep learning model CRISPRon for improved performance predictions.Xi XiangGiulia I. CorsiChristian AnthonKunli QuXiaoguang PanXue LiangPeng HanZhanying DongLijun LiuJiayan ZhongTao MaJinbao WangXiuqing ZhangHui JiangFengping XuXin LiuXun XuJian WangHuanming YangLars BolundGeorge M. ChurchLin LinJan GorodkinYonglun LuoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xi Xiang
Giulia I. Corsi
Christian Anthon
Kunli Qu
Xiaoguang Pan
Xue Liang
Peng Han
Zhanying Dong
Lijun Liu
Jiayan Zhong
Tao Ma
Jinbao Wang
Xiuqing Zhang
Hui Jiang
Fengping Xu
Xin Liu
Xun Xu
Jian Wang
Huanming Yang
Lars Bolund
George M. Church
Lin Lin
Jan Gorodkin
Yonglun Luo
Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
description High-quality gRNA activity data is needed for accurate on-target efficiency predictions. Here the authors generate activity data for over 10,000 gRNA and build a deep learning model CRISPRon for improved performance predictions.
format article
author Xi Xiang
Giulia I. Corsi
Christian Anthon
Kunli Qu
Xiaoguang Pan
Xue Liang
Peng Han
Zhanying Dong
Lijun Liu
Jiayan Zhong
Tao Ma
Jinbao Wang
Xiuqing Zhang
Hui Jiang
Fengping Xu
Xin Liu
Xun Xu
Jian Wang
Huanming Yang
Lars Bolund
George M. Church
Lin Lin
Jan Gorodkin
Yonglun Luo
author_facet Xi Xiang
Giulia I. Corsi
Christian Anthon
Kunli Qu
Xiaoguang Pan
Xue Liang
Peng Han
Zhanying Dong
Lijun Liu
Jiayan Zhong
Tao Ma
Jinbao Wang
Xiuqing Zhang
Hui Jiang
Fengping Xu
Xin Liu
Xun Xu
Jian Wang
Huanming Yang
Lars Bolund
George M. Church
Lin Lin
Jan Gorodkin
Yonglun Luo
author_sort Xi Xiang
title Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
title_short Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
title_full Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
title_fullStr Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
title_full_unstemmed Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
title_sort enhancing crispr-cas9 grna efficiency prediction by data integration and deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d2630a00271e4fa5a1f663c1d03d658b
work_keys_str_mv AT xixiang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT giuliaicorsi enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT christiananthon enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT kunliqu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT xiaoguangpan enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT xueliang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT penghan enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT zhanyingdong enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT lijunliu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT jiayanzhong enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT taoma enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT jinbaowang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT xiuqingzhang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT huijiang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT fengpingxu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT xinliu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT xunxu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT jianwang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT huanmingyang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT larsbolund enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT georgemchurch enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT linlin enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT jangorodkin enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT yonglunluo enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
_version_ 1718389165667647488