Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
High-quality gRNA activity data is needed for accurate on-target efficiency predictions. Here the authors generate activity data for over 10,000 gRNA and build a deep learning model CRISPRon for improved performance predictions.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d2630a00271e4fa5a1f663c1d03d658b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d2630a00271e4fa5a1f663c1d03d658b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d2630a00271e4fa5a1f663c1d03d658b2021-12-02T15:00:50ZEnhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning10.1038/s41467-021-23576-02041-1723https://doaj.org/article/d2630a00271e4fa5a1f663c1d03d658b2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23576-0https://doaj.org/toc/2041-1723High-quality gRNA activity data is needed for accurate on-target efficiency predictions. Here the authors generate activity data for over 10,000 gRNA and build a deep learning model CRISPRon for improved performance predictions.Xi XiangGiulia I. CorsiChristian AnthonKunli QuXiaoguang PanXue LiangPeng HanZhanying DongLijun LiuJiayan ZhongTao MaJinbao WangXiuqing ZhangHui JiangFengping XuXin LiuXun XuJian WangHuanming YangLars BolundGeorge M. ChurchLin LinJan GorodkinYonglun LuoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Xi Xiang Giulia I. Corsi Christian Anthon Kunli Qu Xiaoguang Pan Xue Liang Peng Han Zhanying Dong Lijun Liu Jiayan Zhong Tao Ma Jinbao Wang Xiuqing Zhang Hui Jiang Fengping Xu Xin Liu Xun Xu Jian Wang Huanming Yang Lars Bolund George M. Church Lin Lin Jan Gorodkin Yonglun Luo Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning |
description |
High-quality gRNA activity data is needed for accurate on-target efficiency predictions. Here the authors generate activity data for over 10,000 gRNA and build a deep learning model CRISPRon for improved performance predictions. |
format |
article |
author |
Xi Xiang Giulia I. Corsi Christian Anthon Kunli Qu Xiaoguang Pan Xue Liang Peng Han Zhanying Dong Lijun Liu Jiayan Zhong Tao Ma Jinbao Wang Xiuqing Zhang Hui Jiang Fengping Xu Xin Liu Xun Xu Jian Wang Huanming Yang Lars Bolund George M. Church Lin Lin Jan Gorodkin Yonglun Luo |
author_facet |
Xi Xiang Giulia I. Corsi Christian Anthon Kunli Qu Xiaoguang Pan Xue Liang Peng Han Zhanying Dong Lijun Liu Jiayan Zhong Tao Ma Jinbao Wang Xiuqing Zhang Hui Jiang Fengping Xu Xin Liu Xun Xu Jian Wang Huanming Yang Lars Bolund George M. Church Lin Lin Jan Gorodkin Yonglun Luo |
author_sort |
Xi Xiang |
title |
Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning |
title_short |
Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning |
title_full |
Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning |
title_fullStr |
Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning |
title_full_unstemmed |
Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning |
title_sort |
enhancing crispr-cas9 grna efficiency prediction by data integration and deep learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/d2630a00271e4fa5a1f663c1d03d658b |
work_keys_str_mv |
AT xixiang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT giuliaicorsi enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT christiananthon enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT kunliqu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT xiaoguangpan enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT xueliang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT penghan enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT zhanyingdong enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT lijunliu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT jiayanzhong enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT taoma enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT jinbaowang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT xiuqingzhang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT huijiang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT fengpingxu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT xinliu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT xunxu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT jianwang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT huanmingyang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT larsbolund enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT georgemchurch enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT linlin enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT jangorodkin enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning AT yonglunluo enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning |
_version_ |
1718389165667647488 |