Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
High-quality gRNA activity data is needed for accurate on-target efficiency predictions. Here the authors generate activity data for over 10,000 gRNA and build a deep learning model CRISPRon for improved performance predictions.
Enregistré dans:
Auteurs principaux: | Xi Xiang, Giulia I. Corsi, Christian Anthon, Kunli Qu, Xiaoguang Pan, Xue Liang, Peng Han, Zhanying Dong, Lijun Liu, Jiayan Zhong, Tao Ma, Jinbao Wang, Xiuqing Zhang, Hui Jiang, Fengping Xu, Xin Liu, Xun Xu, Jian Wang, Huanming Yang, Lars Bolund, George M. Church, Lin Lin, Jan Gorodkin, Yonglun Luo |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d2630a00271e4fa5a1f663c1d03d658b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae
par: Yueping Zhang, et autres
Publié: (2019) -
Optimized electroporation of CRISPR-Cas9/gRNA ribonucleoprotein complex for selection-free homologous recombination in human pluripotent stem cells
par: Huaigeng Xu, et autres
Publié: (2021) -
CSC software corrects off-target mediated gRNA depletion in CRISPR-Cas9 essentiality screens
par: Alexendar R. Perez, et autres
Publié: (2021) -
Genome dependent Cas9/gRNA search time underlies sequence dependent gRNA activity
par: E. A. Moreb, et autres
Publié: (2021) -
Machine learning based CRISPR gRNA design for therapeutic exon skipping.
par: Wilson Louie, et autres
Publié: (2021)