Finite Sums Involving Reciprocals of the Binomial and Central Binomial Coefficients and Harmonic Numbers
We prove some finite sum identities involving reciprocals of the binomial and central binomial coefficients, as well as harmonic, Fibonacci and Lucas numbers, some of which recover previously known results, while the others are new.
Guardado en:
Autores principales: | Necdet Batir, Anthony Sofo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d277a7af7e214472abf15da1ea080c14 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ON SUMS OF BINOMIAL COEFFICIENTS
por: SOFO,ANTHONY
Publicado: (2009) -
SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
por: Čerin,Zvonko
Publicado: (2013) -
Partial Fractions and q-Binomial Determinant Identities
por: Chu,Wenchang, et al.
Publicado: (2010) -
Improving some sequences convergent to Euler-Mascheroni constant
por: Batir,Necdet, et al.
Publicado: (2012) -
The harmonic index for trees with given domination number
por: Xipeng Hu, et al.
Publicado: (2021)