Natural Nano-Drug Delivery System in Coptidis Rhizoma Extract with Modified Berberine Hydrochloride Pharmacokinetics
Jing Zhao,1,* Qing Zhao,1,* Jing-Ze Lu,1 Dan Ye,1 Sheng Mu,1 Xiao-Di Yang,2 Wei-Dong Zhang,3,4 Bing-Liang Ma1 1Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China; 2Innovation Research Institute of Traditional...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d2848fe95f784545b98789d158fc79f6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d2848fe95f784545b98789d158fc79f6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d2848fe95f784545b98789d158fc79f62021-12-02T19:14:26ZNatural Nano-Drug Delivery System in Coptidis Rhizoma Extract with Modified Berberine Hydrochloride Pharmacokinetics1178-2013https://doaj.org/article/d2848fe95f784545b98789d158fc79f62021-09-01T00:00:00Zhttps://www.dovepress.com/natural-nano-drug-delivery-system-in-coptidis-rhizoma-extract-with-mod-peer-reviewed-fulltext-article-IJNhttps://doaj.org/toc/1178-2013Jing Zhao,1,* Qing Zhao,1,* Jing-Ze Lu,1 Dan Ye,1 Sheng Mu,1 Xiao-Di Yang,2 Wei-Dong Zhang,3,4 Bing-Liang Ma1 1Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China; 2Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China; 3Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China; 4School of Pharmacy, Second Military Medical University, Shanghai, 200433, People’s Republic of China*These authors contributed equally to this workCorrespondence: Wei-Dong Zhang; Bing-Liang Ma Email wdzhangy@hotmail.com; bingliang.ma@hotmail.comPurpose: This study aimed to evaluate the pharmaceutical and pharmacokinetic effects of the natural nanoparticles (Nnps) isolated from Coptidis Rhizoma extract on berberine hydrochloride (BBR) and systematically explore the related mechanisms.Methods: Firstly, Nnps were isolated from Coptidis Rhizoma extract and then an Nnps-BBR complex was prepared. After qualitative and quantitative analysis in terms of size, Zeta potential, morphology, and composition of the Nnps and the Nnps-BBR complex, the effects of the Nnps on the crystallization of BBR were characterized. The effects of the Nnps on the solubility and dissolution of BBR were then evaluated. In addition, the effects of the Nnps on BBR in terms of cellular uptake, transmembrane transport, metabolic stability, and pharmacokinetics in mice were studied.Results: The Nnps had an average size of 166.6 ± 1.3 nm and Zeta potential of − 12.5 ± 0.2 mV. The Nnps were formed by denaturation of co-existing plant proteins with molecular weight < 30 kDa. The Nnps adsorbed or dispersed BBR, thereby promoting BBR transformation from crystal to amorphous form and improving its solubility and dissolution. The Nnps carried and promoted BBR uptake by human colonic adenocarcinoma (Caco-2) cells via caveolae-mediated endocytosis, reducing P-gp-mediated efflux of BBR in mice gut sacs and Madin-Darby canine kidney cells stably expressing the transporter P-gp (MDCK-MDR1) cells. Moreover, the Nnps improved BBR metabolic stability in mouse intestinal S9, promoting BBR intestinal absorption in mice, as shown by increased peak BBR concentration (Cmax, 1182.3 vs 310.2 ng/mL) and exposure level (AUC0– 12 h, 2842.8 vs 1447.0 ng·h/mL) in mouse portal vein. In addition, the Nnps increased BBR exposure level in mouse livers (95,443.2 vs 43,586.2 ng·h/g liver).Conclusion: The proteinaceous nanoparticles isolated from Coptidis Rhizoma extract can form a natural nano-drug delivery system with BBR, thereby significantly improving the pharmacokinetics of oral BBR.Keywords: natural nanoparticles, drug delivery system, pharmacokinetic synergy, berberine hydrochloride, herbal extractZhao JZhao QLu JZYe DMu SYang XDZhang WDMa BLDove Medical Pressarticlenatural nanoparticlesdrug delivery systempharmacokinetic synergyberberine hydrochlorideherbal extractMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 16, Pp 6297-6311 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
natural nanoparticles drug delivery system pharmacokinetic synergy berberine hydrochloride herbal extract Medicine (General) R5-920 |
spellingShingle |
natural nanoparticles drug delivery system pharmacokinetic synergy berberine hydrochloride herbal extract Medicine (General) R5-920 Zhao J Zhao Q Lu JZ Ye D Mu S Yang XD Zhang WD Ma BL Natural Nano-Drug Delivery System in Coptidis Rhizoma Extract with Modified Berberine Hydrochloride Pharmacokinetics |
description |
Jing Zhao,1,* Qing Zhao,1,* Jing-Ze Lu,1 Dan Ye,1 Sheng Mu,1 Xiao-Di Yang,2 Wei-Dong Zhang,3,4 Bing-Liang Ma1 1Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China; 2Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China; 3Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China; 4School of Pharmacy, Second Military Medical University, Shanghai, 200433, People’s Republic of China*These authors contributed equally to this workCorrespondence: Wei-Dong Zhang; Bing-Liang Ma Email wdzhangy@hotmail.com; bingliang.ma@hotmail.comPurpose: This study aimed to evaluate the pharmaceutical and pharmacokinetic effects of the natural nanoparticles (Nnps) isolated from Coptidis Rhizoma extract on berberine hydrochloride (BBR) and systematically explore the related mechanisms.Methods: Firstly, Nnps were isolated from Coptidis Rhizoma extract and then an Nnps-BBR complex was prepared. After qualitative and quantitative analysis in terms of size, Zeta potential, morphology, and composition of the Nnps and the Nnps-BBR complex, the effects of the Nnps on the crystallization of BBR were characterized. The effects of the Nnps on the solubility and dissolution of BBR were then evaluated. In addition, the effects of the Nnps on BBR in terms of cellular uptake, transmembrane transport, metabolic stability, and pharmacokinetics in mice were studied.Results: The Nnps had an average size of 166.6 ± 1.3 nm and Zeta potential of − 12.5 ± 0.2 mV. The Nnps were formed by denaturation of co-existing plant proteins with molecular weight < 30 kDa. The Nnps adsorbed or dispersed BBR, thereby promoting BBR transformation from crystal to amorphous form and improving its solubility and dissolution. The Nnps carried and promoted BBR uptake by human colonic adenocarcinoma (Caco-2) cells via caveolae-mediated endocytosis, reducing P-gp-mediated efflux of BBR in mice gut sacs and Madin-Darby canine kidney cells stably expressing the transporter P-gp (MDCK-MDR1) cells. Moreover, the Nnps improved BBR metabolic stability in mouse intestinal S9, promoting BBR intestinal absorption in mice, as shown by increased peak BBR concentration (Cmax, 1182.3 vs 310.2 ng/mL) and exposure level (AUC0– 12 h, 2842.8 vs 1447.0 ng·h/mL) in mouse portal vein. In addition, the Nnps increased BBR exposure level in mouse livers (95,443.2 vs 43,586.2 ng·h/g liver).Conclusion: The proteinaceous nanoparticles isolated from Coptidis Rhizoma extract can form a natural nano-drug delivery system with BBR, thereby significantly improving the pharmacokinetics of oral BBR.Keywords: natural nanoparticles, drug delivery system, pharmacokinetic synergy, berberine hydrochloride, herbal extract |
format |
article |
author |
Zhao J Zhao Q Lu JZ Ye D Mu S Yang XD Zhang WD Ma BL |
author_facet |
Zhao J Zhao Q Lu JZ Ye D Mu S Yang XD Zhang WD Ma BL |
author_sort |
Zhao J |
title |
Natural Nano-Drug Delivery System in Coptidis Rhizoma Extract with Modified Berberine Hydrochloride Pharmacokinetics |
title_short |
Natural Nano-Drug Delivery System in Coptidis Rhizoma Extract with Modified Berberine Hydrochloride Pharmacokinetics |
title_full |
Natural Nano-Drug Delivery System in Coptidis Rhizoma Extract with Modified Berberine Hydrochloride Pharmacokinetics |
title_fullStr |
Natural Nano-Drug Delivery System in Coptidis Rhizoma Extract with Modified Berberine Hydrochloride Pharmacokinetics |
title_full_unstemmed |
Natural Nano-Drug Delivery System in Coptidis Rhizoma Extract with Modified Berberine Hydrochloride Pharmacokinetics |
title_sort |
natural nano-drug delivery system in coptidis rhizoma extract with modified berberine hydrochloride pharmacokinetics |
publisher |
Dove Medical Press |
publishDate |
2021 |
url |
https://doaj.org/article/d2848fe95f784545b98789d158fc79f6 |
work_keys_str_mv |
AT zhaoj naturalnanodrugdeliverysystemincoptidisrhizomaextractwithmodifiedberberinehydrochloridepharmacokinetics AT zhaoq naturalnanodrugdeliverysystemincoptidisrhizomaextractwithmodifiedberberinehydrochloridepharmacokinetics AT lujz naturalnanodrugdeliverysystemincoptidisrhizomaextractwithmodifiedberberinehydrochloridepharmacokinetics AT yed naturalnanodrugdeliverysystemincoptidisrhizomaextractwithmodifiedberberinehydrochloridepharmacokinetics AT mus naturalnanodrugdeliverysystemincoptidisrhizomaextractwithmodifiedberberinehydrochloridepharmacokinetics AT yangxd naturalnanodrugdeliverysystemincoptidisrhizomaextractwithmodifiedberberinehydrochloridepharmacokinetics AT zhangwd naturalnanodrugdeliverysystemincoptidisrhizomaextractwithmodifiedberberinehydrochloridepharmacokinetics AT mabl naturalnanodrugdeliverysystemincoptidisrhizomaextractwithmodifiedberberinehydrochloridepharmacokinetics |
_version_ |
1718376999092748288 |