Predicting the distribution of commercially important invertebrate stocks under future climate.

The future management of commercially exploited species is challenging because techniques used to predict the future distribution of stocks under climate change are currently inadequate. We projected the future distribution and abundance of two commercially harvested abalone species (blacklip abalon...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bayden D Russell, Sean D Connell, Camille Mellin, Barry W Brook, Owen W Burnell, Damien A Fordham
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d29142d9d01a4a61a26032a765c2874f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d29142d9d01a4a61a26032a765c2874f
record_format dspace
spelling oai:doaj.org-article:d29142d9d01a4a61a26032a765c2874f2021-11-18T08:05:30ZPredicting the distribution of commercially important invertebrate stocks under future climate.1932-620310.1371/journal.pone.0046554https://doaj.org/article/d29142d9d01a4a61a26032a765c2874f2012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23251326/?tool=EBIhttps://doaj.org/toc/1932-6203The future management of commercially exploited species is challenging because techniques used to predict the future distribution of stocks under climate change are currently inadequate. We projected the future distribution and abundance of two commercially harvested abalone species (blacklip abalone, Haliotis rubra and greenlip abalone, H. laevigata) inhabiting coastal South Australia, using multiple species distribution models (SDM) and for decadal time slices through to 2100. Projections are based on two contrasting global greenhouse gas emissions scenarios. The SDMs identified August (winter) Sea Surface Temperature (SST) as the best descriptor of abundance and forecast that warming of winter temperatures under both scenarios may be beneficial to both species by allowing increased abundance and expansion into previously uninhabited coasts. This range expansion is unlikely to be realised, however, as projected warming of March SST is projected to exceed temperatures which cause up to 10-fold increases in juvenile mortality. By linking fine-resolution forecasts of sea surface temperature under different climate change scenarios to SDMs and physiological experiments, we provide a practical first approximation of the potential impact of climate-induced change on two species of marine invertebrates in the same fishery.Bayden D RussellSean D ConnellCamille MellinBarry W BrookOwen W BurnellDamien A FordhamPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 12, p e46554 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Bayden D Russell
Sean D Connell
Camille Mellin
Barry W Brook
Owen W Burnell
Damien A Fordham
Predicting the distribution of commercially important invertebrate stocks under future climate.
description The future management of commercially exploited species is challenging because techniques used to predict the future distribution of stocks under climate change are currently inadequate. We projected the future distribution and abundance of two commercially harvested abalone species (blacklip abalone, Haliotis rubra and greenlip abalone, H. laevigata) inhabiting coastal South Australia, using multiple species distribution models (SDM) and for decadal time slices through to 2100. Projections are based on two contrasting global greenhouse gas emissions scenarios. The SDMs identified August (winter) Sea Surface Temperature (SST) as the best descriptor of abundance and forecast that warming of winter temperatures under both scenarios may be beneficial to both species by allowing increased abundance and expansion into previously uninhabited coasts. This range expansion is unlikely to be realised, however, as projected warming of March SST is projected to exceed temperatures which cause up to 10-fold increases in juvenile mortality. By linking fine-resolution forecasts of sea surface temperature under different climate change scenarios to SDMs and physiological experiments, we provide a practical first approximation of the potential impact of climate-induced change on two species of marine invertebrates in the same fishery.
format article
author Bayden D Russell
Sean D Connell
Camille Mellin
Barry W Brook
Owen W Burnell
Damien A Fordham
author_facet Bayden D Russell
Sean D Connell
Camille Mellin
Barry W Brook
Owen W Burnell
Damien A Fordham
author_sort Bayden D Russell
title Predicting the distribution of commercially important invertebrate stocks under future climate.
title_short Predicting the distribution of commercially important invertebrate stocks under future climate.
title_full Predicting the distribution of commercially important invertebrate stocks under future climate.
title_fullStr Predicting the distribution of commercially important invertebrate stocks under future climate.
title_full_unstemmed Predicting the distribution of commercially important invertebrate stocks under future climate.
title_sort predicting the distribution of commercially important invertebrate stocks under future climate.
publisher Public Library of Science (PLoS)
publishDate 2012
url https://doaj.org/article/d29142d9d01a4a61a26032a765c2874f
work_keys_str_mv AT baydendrussell predictingthedistributionofcommerciallyimportantinvertebratestocksunderfutureclimate
AT seandconnell predictingthedistributionofcommerciallyimportantinvertebratestocksunderfutureclimate
AT camillemellin predictingthedistributionofcommerciallyimportantinvertebratestocksunderfutureclimate
AT barrywbrook predictingthedistributionofcommerciallyimportantinvertebratestocksunderfutureclimate
AT owenwburnell predictingthedistributionofcommerciallyimportantinvertebratestocksunderfutureclimate
AT damienafordham predictingthedistributionofcommerciallyimportantinvertebratestocksunderfutureclimate
_version_ 1718422259145637888