Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data

Abstract Blood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: David R. Rutkowski, Alejandro Roldán-Alzate, Kevin M. Johnson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d295f749fc4349b59b3d4283af72621a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d295f749fc4349b59b3d4283af72621a
record_format dspace
spelling oai:doaj.org-article:d295f749fc4349b59b3d4283af72621a2021-12-02T16:50:37ZEnhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data10.1038/s41598-021-89636-z2045-2322https://doaj.org/article/d295f749fc4349b59b3d4283af72621a2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-89636-zhttps://doaj.org/toc/2045-2322Abstract Blood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.David R. RutkowskiAlejandro Roldán-AlzateKevin M. JohnsonNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
David R. Rutkowski
Alejandro Roldán-Alzate
Kevin M. Johnson
Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data
description Abstract Blood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.
format article
author David R. Rutkowski
Alejandro Roldán-Alzate
Kevin M. Johnson
author_facet David R. Rutkowski
Alejandro Roldán-Alzate
Kevin M. Johnson
author_sort David R. Rutkowski
title Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data
title_short Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data
title_full Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data
title_fullStr Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data
title_full_unstemmed Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data
title_sort enhancement of cerebrovascular 4d flow mri velocity fields using machine learning and computational fluid dynamics simulation data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d295f749fc4349b59b3d4283af72621a
work_keys_str_mv AT davidrrutkowski enhancementofcerebrovascular4dflowmrivelocityfieldsusingmachinelearningandcomputationalfluiddynamicssimulationdata
AT alejandroroldanalzate enhancementofcerebrovascular4dflowmrivelocityfieldsusingmachinelearningandcomputationalfluiddynamicssimulationdata
AT kevinmjohnson enhancementofcerebrovascular4dflowmrivelocityfieldsusingmachinelearningandcomputationalfluiddynamicssimulationdata
_version_ 1718383067995832320