Machine learning for laser-induced electron diffraction imaging of molecular structures

Diffraction imaging offers high spatiotemporal resolution, but fitting complex molecular structure data is expensive. Here, the authors use a machine learning algorithm with a convolutional neural network to retrieve a complex and large molecule, fenchone (C10H16O), from laser-induced electron diffr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xinyao Liu, Kasra Amini, Aurelien Sanchez, Blanca Belsa, Tobias Steinle, Jens Biegert
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/d2b26194b0f3431e99966ab82846d27b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Diffraction imaging offers high spatiotemporal resolution, but fitting complex molecular structure data is expensive. Here, the authors use a machine learning algorithm with a convolutional neural network to retrieve a complex and large molecule, fenchone (C10H16O), from laser-induced electron diffraction data without the need for fitting or ab initio calculations.