Machine learning for laser-induced electron diffraction imaging of molecular structures
Diffraction imaging offers high spatiotemporal resolution, but fitting complex molecular structure data is expensive. Here, the authors use a machine learning algorithm with a convolutional neural network to retrieve a complex and large molecule, fenchone (C10H16O), from laser-induced electron diffr...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d2b26194b0f3431e99966ab82846d27b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d2b26194b0f3431e99966ab82846d27b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d2b26194b0f3431e99966ab82846d27b2021-11-14T12:07:19ZMachine learning for laser-induced electron diffraction imaging of molecular structures10.1038/s42004-021-00594-z2399-3669https://doaj.org/article/d2b26194b0f3431e99966ab82846d27b2021-11-01T00:00:00Zhttps://doi.org/10.1038/s42004-021-00594-zhttps://doaj.org/toc/2399-3669Diffraction imaging offers high spatiotemporal resolution, but fitting complex molecular structure data is expensive. Here, the authors use a machine learning algorithm with a convolutional neural network to retrieve a complex and large molecule, fenchone (C10H16O), from laser-induced electron diffraction data without the need for fitting or ab initio calculations.Xinyao LiuKasra AminiAurelien SanchezBlanca BelsaTobias SteinleJens BiegertNature PortfolioarticleChemistryQD1-999ENCommunications Chemistry, Vol 4, Iss 1, Pp 1-7 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Chemistry QD1-999 |
spellingShingle |
Chemistry QD1-999 Xinyao Liu Kasra Amini Aurelien Sanchez Blanca Belsa Tobias Steinle Jens Biegert Machine learning for laser-induced electron diffraction imaging of molecular structures |
description |
Diffraction imaging offers high spatiotemporal resolution, but fitting complex molecular structure data is expensive. Here, the authors use a machine learning algorithm with a convolutional neural network to retrieve a complex and large molecule, fenchone (C10H16O), from laser-induced electron diffraction data without the need for fitting or ab initio calculations. |
format |
article |
author |
Xinyao Liu Kasra Amini Aurelien Sanchez Blanca Belsa Tobias Steinle Jens Biegert |
author_facet |
Xinyao Liu Kasra Amini Aurelien Sanchez Blanca Belsa Tobias Steinle Jens Biegert |
author_sort |
Xinyao Liu |
title |
Machine learning for laser-induced electron diffraction imaging of molecular structures |
title_short |
Machine learning for laser-induced electron diffraction imaging of molecular structures |
title_full |
Machine learning for laser-induced electron diffraction imaging of molecular structures |
title_fullStr |
Machine learning for laser-induced electron diffraction imaging of molecular structures |
title_full_unstemmed |
Machine learning for laser-induced electron diffraction imaging of molecular structures |
title_sort |
machine learning for laser-induced electron diffraction imaging of molecular structures |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/d2b26194b0f3431e99966ab82846d27b |
work_keys_str_mv |
AT xinyaoliu machinelearningforlaserinducedelectrondiffractionimagingofmolecularstructures AT kasraamini machinelearningforlaserinducedelectrondiffractionimagingofmolecularstructures AT aureliensanchez machinelearningforlaserinducedelectrondiffractionimagingofmolecularstructures AT blancabelsa machinelearningforlaserinducedelectrondiffractionimagingofmolecularstructures AT tobiassteinle machinelearningforlaserinducedelectrondiffractionimagingofmolecularstructures AT jensbiegert machinelearningforlaserinducedelectrondiffractionimagingofmolecularstructures |
_version_ |
1718429434509262848 |