<italic toggle="yes">Mycobacterium tuberculosis</italic> Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates
ABSTRACT The protein degradation machinery of Mycobacterium tuberculosis includes a proteasome and a ubiquitin-like protein (Pup). Proteasome accessory factor A (PafA) attaches Pup to proteins to target them for degradation by the proteasome. Free Pup is unstable and never observed in extracts of M....
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d2b74ebe65b244948a736ea43510d1c5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d2b74ebe65b244948a736ea43510d1c5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d2b74ebe65b244948a736ea43510d1c52021-11-15T15:51:06Z<italic toggle="yes">Mycobacterium tuberculosis</italic> Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates10.1128/mBio.00122-172150-7511https://doaj.org/article/d2b74ebe65b244948a736ea43510d1c52017-03-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00122-17https://doaj.org/toc/2150-7511ABSTRACT The protein degradation machinery of Mycobacterium tuberculosis includes a proteasome and a ubiquitin-like protein (Pup). Proteasome accessory factor A (PafA) attaches Pup to proteins to target them for degradation by the proteasome. Free Pup is unstable and never observed in extracts of M. tuberculosis, an observation that led us to hypothesize that PafA may need alternative sources of Pup. Here, we show that PafA can move Pup from one proteasome substrate, inositol 1-phosphate synthetase (Ino1), to two different proteins, malonyl coenzyme A (CoA)-acyl carrier protein transacylase (FabD) and lonely guy (Log). This apparent “transpupylation” reaction required a previously unrecognized depupylase activity in PafA, and, surprisingly, this depupylase activity was much more efficient than the activity of the dedicated depupylase Dop (deamidase of Pup). Thus, PafA can potentially use both newly synthesized Pup and recycled Pup to doom proteins for degradation. IMPORTANCE Unlike eukaryotes, which contain hundreds of ubiquitin ligases, Pup-containing bacteria appear to have a single ligase to pupylate dozens if not hundreds of different proteins. The observation that PafA can depupylate and transpupylate in vitro offers new insight into how protein stability is regulated in proteasome-bearing bacteria. Importantly, PafA and the dedicated depupylase Dop are each required for the full virulence of Mycobacterium tuberculosis. Thus, inhibition of both enzymes may be extremely attractive for the development of therapeutics against tuberculosis.Susan ZhangKristin E. Burns-HuangGuido V. JanssenHuilin LiHuib OvaaLizbeth HedstromK. Heran DarwinAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 8, Iss 1 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Microbiology QR1-502 |
spellingShingle |
Microbiology QR1-502 Susan Zhang Kristin E. Burns-Huang Guido V. Janssen Huilin Li Huib Ovaa Lizbeth Hedstrom K. Heran Darwin <italic toggle="yes">Mycobacterium tuberculosis</italic> Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates |
description |
ABSTRACT The protein degradation machinery of Mycobacterium tuberculosis includes a proteasome and a ubiquitin-like protein (Pup). Proteasome accessory factor A (PafA) attaches Pup to proteins to target them for degradation by the proteasome. Free Pup is unstable and never observed in extracts of M. tuberculosis, an observation that led us to hypothesize that PafA may need alternative sources of Pup. Here, we show that PafA can move Pup from one proteasome substrate, inositol 1-phosphate synthetase (Ino1), to two different proteins, malonyl coenzyme A (CoA)-acyl carrier protein transacylase (FabD) and lonely guy (Log). This apparent “transpupylation” reaction required a previously unrecognized depupylase activity in PafA, and, surprisingly, this depupylase activity was much more efficient than the activity of the dedicated depupylase Dop (deamidase of Pup). Thus, PafA can potentially use both newly synthesized Pup and recycled Pup to doom proteins for degradation. IMPORTANCE Unlike eukaryotes, which contain hundreds of ubiquitin ligases, Pup-containing bacteria appear to have a single ligase to pupylate dozens if not hundreds of different proteins. The observation that PafA can depupylate and transpupylate in vitro offers new insight into how protein stability is regulated in proteasome-bearing bacteria. Importantly, PafA and the dedicated depupylase Dop are each required for the full virulence of Mycobacterium tuberculosis. Thus, inhibition of both enzymes may be extremely attractive for the development of therapeutics against tuberculosis. |
format |
article |
author |
Susan Zhang Kristin E. Burns-Huang Guido V. Janssen Huilin Li Huib Ovaa Lizbeth Hedstrom K. Heran Darwin |
author_facet |
Susan Zhang Kristin E. Burns-Huang Guido V. Janssen Huilin Li Huib Ovaa Lizbeth Hedstrom K. Heran Darwin |
author_sort |
Susan Zhang |
title |
<italic toggle="yes">Mycobacterium tuberculosis</italic> Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates |
title_short |
<italic toggle="yes">Mycobacterium tuberculosis</italic> Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates |
title_full |
<italic toggle="yes">Mycobacterium tuberculosis</italic> Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates |
title_fullStr |
<italic toggle="yes">Mycobacterium tuberculosis</italic> Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates |
title_full_unstemmed |
<italic toggle="yes">Mycobacterium tuberculosis</italic> Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates |
title_sort |
<italic toggle="yes">mycobacterium tuberculosis</italic> proteasome accessory factor a (pafa) can transfer prokaryotic ubiquitin-like protein (pup) between substrates |
publisher |
American Society for Microbiology |
publishDate |
2017 |
url |
https://doaj.org/article/d2b74ebe65b244948a736ea43510d1c5 |
work_keys_str_mv |
AT susanzhang italictoggleyesmycobacteriumtuberculosisitalicproteasomeaccessoryfactorapafacantransferprokaryoticubiquitinlikeproteinpupbetweensubstrates AT kristineburnshuang italictoggleyesmycobacteriumtuberculosisitalicproteasomeaccessoryfactorapafacantransferprokaryoticubiquitinlikeproteinpupbetweensubstrates AT guidovjanssen italictoggleyesmycobacteriumtuberculosisitalicproteasomeaccessoryfactorapafacantransferprokaryoticubiquitinlikeproteinpupbetweensubstrates AT huilinli italictoggleyesmycobacteriumtuberculosisitalicproteasomeaccessoryfactorapafacantransferprokaryoticubiquitinlikeproteinpupbetweensubstrates AT huibovaa italictoggleyesmycobacteriumtuberculosisitalicproteasomeaccessoryfactorapafacantransferprokaryoticubiquitinlikeproteinpupbetweensubstrates AT lizbethhedstrom italictoggleyesmycobacteriumtuberculosisitalicproteasomeaccessoryfactorapafacantransferprokaryoticubiquitinlikeproteinpupbetweensubstrates AT kherandarwin italictoggleyesmycobacteriumtuberculosisitalicproteasomeaccessoryfactorapafacantransferprokaryoticubiquitinlikeproteinpupbetweensubstrates |
_version_ |
1718427427497050112 |