CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
Abstract Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d2c28ff980a9402c89aa70b1c7a2f382 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d2c28ff980a9402c89aa70b1c7a2f382 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d2c28ff980a9402c89aa70b1c7a2f3822021-11-28T12:18:29ZCinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)10.1038/s41598-021-02111-72045-2322https://doaj.org/article/d2c28ff980a9402c89aa70b1c7a2f3822021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02111-7https://doaj.org/toc/2045-2322Abstract Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia) with deep learning for VA risk prediction from cine cardiac magnetic resonance (CMR). Using a training cohort of primary prevention ICD recipients (n = 350, 97 women, median age 59 years, 178 ischemic cardiomyopathy) who underwent CMR immediately prior to ICD implantation, we developed two neural networks: Cine Fingerprint Extractor and Risk Predictor. The former extracts cardiac structure and function features from cine CMR in a form of cine fingerprint in a fully unsupervised fashion, and the latter takes in the cine fingerprint and outputs disease outcomes as a cine risk score. Patients with VA (n = 96) had a significantly higher cine risk score than those without VA. Multivariate analysis showed that the cine risk score was significantly associated with VA after adjusting for clinical characteristics, cardiac structure and function including CMR-derived scar extent. These findings indicate that non-contrast, cine CMR inherently contains features to improve VA risk prediction in primary prevention ICD candidates. We solicit participation from multiple centers for external validation.Julian KrebsTommaso MansiHervé DelingetteBin LouJoao A. C. LimaSusumu TaoLuisa A. CiuffoSanaz NorgardBarbara ButcherWei H. LeeEla ChameraTimm-Michael DickfeldMichael StillabowerJoseph E. MarineRobert G. WeissGordon F. TomaselliHenry HalperinKatherine C. WuHiroshi AshikagaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Julian Krebs Tommaso Mansi Hervé Delingette Bin Lou Joao A. C. Lima Susumu Tao Luisa A. Ciuffo Sanaz Norgard Barbara Butcher Wei H. Lee Ela Chamera Timm-Michael Dickfeld Michael Stillabower Joseph E. Marine Robert G. Weiss Gordon F. Tomaselli Henry Halperin Katherine C. Wu Hiroshi Ashikaga CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
description |
Abstract Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia) with deep learning for VA risk prediction from cine cardiac magnetic resonance (CMR). Using a training cohort of primary prevention ICD recipients (n = 350, 97 women, median age 59 years, 178 ischemic cardiomyopathy) who underwent CMR immediately prior to ICD implantation, we developed two neural networks: Cine Fingerprint Extractor and Risk Predictor. The former extracts cardiac structure and function features from cine CMR in a form of cine fingerprint in a fully unsupervised fashion, and the latter takes in the cine fingerprint and outputs disease outcomes as a cine risk score. Patients with VA (n = 96) had a significantly higher cine risk score than those without VA. Multivariate analysis showed that the cine risk score was significantly associated with VA after adjusting for clinical characteristics, cardiac structure and function including CMR-derived scar extent. These findings indicate that non-contrast, cine CMR inherently contains features to improve VA risk prediction in primary prevention ICD candidates. We solicit participation from multiple centers for external validation. |
format |
article |
author |
Julian Krebs Tommaso Mansi Hervé Delingette Bin Lou Joao A. C. Lima Susumu Tao Luisa A. Ciuffo Sanaz Norgard Barbara Butcher Wei H. Lee Ela Chamera Timm-Michael Dickfeld Michael Stillabower Joseph E. Marine Robert G. Weiss Gordon F. Tomaselli Henry Halperin Katherine C. Wu Hiroshi Ashikaga |
author_facet |
Julian Krebs Tommaso Mansi Hervé Delingette Bin Lou Joao A. C. Lima Susumu Tao Luisa A. Ciuffo Sanaz Norgard Barbara Butcher Wei H. Lee Ela Chamera Timm-Michael Dickfeld Michael Stillabower Joseph E. Marine Robert G. Weiss Gordon F. Tomaselli Henry Halperin Katherine C. Wu Hiroshi Ashikaga |
author_sort |
Julian Krebs |
title |
CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
title_short |
CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
title_full |
CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
title_fullStr |
CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
title_full_unstemmed |
CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
title_sort |
cine cardiac magnetic resonance to predict ventricular arrhythmia (certainty) |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/d2c28ff980a9402c89aa70b1c7a2f382 |
work_keys_str_mv |
AT juliankrebs cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT tommasomansi cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT hervedelingette cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT binlou cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT joaoaclima cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT susumutao cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT luisaaciuffo cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT sanaznorgard cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT barbarabutcher cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT weihlee cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT elachamera cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT timmmichaeldickfeld cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT michaelstillabower cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT josephemarine cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT robertgweiss cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT gordonftomaselli cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT henryhalperin cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT katherinecwu cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT hiroshiashikaga cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty |
_version_ |
1718408104291336192 |