CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)

Abstract Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Julian Krebs, Tommaso Mansi, Hervé Delingette, Bin Lou, Joao A. C. Lima, Susumu Tao, Luisa A. Ciuffo, Sanaz Norgard, Barbara Butcher, Wei H. Lee, Ela Chamera, Timm-Michael Dickfeld, Michael Stillabower, Joseph E. Marine, Robert G. Weiss, Gordon F. Tomaselli, Henry Halperin, Katherine C. Wu, Hiroshi Ashikaga
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d2c28ff980a9402c89aa70b1c7a2f382
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d2c28ff980a9402c89aa70b1c7a2f382
record_format dspace
spelling oai:doaj.org-article:d2c28ff980a9402c89aa70b1c7a2f3822021-11-28T12:18:29ZCinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)10.1038/s41598-021-02111-72045-2322https://doaj.org/article/d2c28ff980a9402c89aa70b1c7a2f3822021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02111-7https://doaj.org/toc/2045-2322Abstract Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia) with deep learning for VA risk prediction from cine cardiac magnetic resonance (CMR). Using a training cohort of primary prevention ICD recipients (n = 350, 97 women, median age 59 years, 178 ischemic cardiomyopathy) who underwent CMR immediately prior to ICD implantation, we developed two neural networks: Cine Fingerprint Extractor and Risk Predictor. The former extracts cardiac structure and function features from cine CMR in a form of cine fingerprint in a fully unsupervised fashion, and the latter takes in the cine fingerprint and outputs disease outcomes as a cine risk score. Patients with VA (n = 96) had a significantly higher cine risk score than those without VA. Multivariate analysis showed that the cine risk score was significantly associated with VA after adjusting for clinical characteristics, cardiac structure and function including CMR-derived scar extent. These findings indicate that non-contrast, cine CMR inherently contains features to improve VA risk prediction in primary prevention ICD candidates. We solicit participation from multiple centers for external validation.Julian KrebsTommaso MansiHervé DelingetteBin LouJoao A. C. LimaSusumu TaoLuisa A. CiuffoSanaz NorgardBarbara ButcherWei H. LeeEla ChameraTimm-Michael DickfeldMichael StillabowerJoseph E. MarineRobert G. WeissGordon F. TomaselliHenry HalperinKatherine C. WuHiroshi AshikagaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Julian Krebs
Tommaso Mansi
Hervé Delingette
Bin Lou
Joao A. C. Lima
Susumu Tao
Luisa A. Ciuffo
Sanaz Norgard
Barbara Butcher
Wei H. Lee
Ela Chamera
Timm-Michael Dickfeld
Michael Stillabower
Joseph E. Marine
Robert G. Weiss
Gordon F. Tomaselli
Henry Halperin
Katherine C. Wu
Hiroshi Ashikaga
CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
description Abstract Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia) with deep learning for VA risk prediction from cine cardiac magnetic resonance (CMR). Using a training cohort of primary prevention ICD recipients (n = 350, 97 women, median age 59 years, 178 ischemic cardiomyopathy) who underwent CMR immediately prior to ICD implantation, we developed two neural networks: Cine Fingerprint Extractor and Risk Predictor. The former extracts cardiac structure and function features from cine CMR in a form of cine fingerprint in a fully unsupervised fashion, and the latter takes in the cine fingerprint and outputs disease outcomes as a cine risk score. Patients with VA (n = 96) had a significantly higher cine risk score than those without VA. Multivariate analysis showed that the cine risk score was significantly associated with VA after adjusting for clinical characteristics, cardiac structure and function including CMR-derived scar extent. These findings indicate that non-contrast, cine CMR inherently contains features to improve VA risk prediction in primary prevention ICD candidates. We solicit participation from multiple centers for external validation.
format article
author Julian Krebs
Tommaso Mansi
Hervé Delingette
Bin Lou
Joao A. C. Lima
Susumu Tao
Luisa A. Ciuffo
Sanaz Norgard
Barbara Butcher
Wei H. Lee
Ela Chamera
Timm-Michael Dickfeld
Michael Stillabower
Joseph E. Marine
Robert G. Weiss
Gordon F. Tomaselli
Henry Halperin
Katherine C. Wu
Hiroshi Ashikaga
author_facet Julian Krebs
Tommaso Mansi
Hervé Delingette
Bin Lou
Joao A. C. Lima
Susumu Tao
Luisa A. Ciuffo
Sanaz Norgard
Barbara Butcher
Wei H. Lee
Ela Chamera
Timm-Michael Dickfeld
Michael Stillabower
Joseph E. Marine
Robert G. Weiss
Gordon F. Tomaselli
Henry Halperin
Katherine C. Wu
Hiroshi Ashikaga
author_sort Julian Krebs
title CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
title_short CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
title_full CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
title_fullStr CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
title_full_unstemmed CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
title_sort cine cardiac magnetic resonance to predict ventricular arrhythmia (certainty)
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d2c28ff980a9402c89aa70b1c7a2f382
work_keys_str_mv AT juliankrebs cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT tommasomansi cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT hervedelingette cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT binlou cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT joaoaclima cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT susumutao cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT luisaaciuffo cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT sanaznorgard cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT barbarabutcher cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT weihlee cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT elachamera cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT timmmichaeldickfeld cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT michaelstillabower cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT josephemarine cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT robertgweiss cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT gordonftomaselli cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT henryhalperin cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT katherinecwu cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT hiroshiashikaga cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
_version_ 1718408104291336192