Aspect Category Classification dengan Pendekatan Machine Learning Menggunakan Dataset Bahasa Indonesia

Ulasan pelanggan merupakan opini terhadap kualitas barang atau jasa yang dirasakan konsumen. Ulasan pelanggan mengandung informasi yang berguna bagi konsumen maupun penyedia barang atau jasa. Ketersediaan ulasan pelanggan dalam jumlah besar pada website membutuhkan suatu framework untuk mengekstraks...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Syaifulloh Amien Pandega Perdana, Teguh Bharata Aji, Ridi Ferdiana
Formato: article
Lenguaje:EN
ID
Publicado: Universitas Gadjah Mada 2021
Materias:
Acceso en línea:https://doaj.org/article/d2c3e334698a48dd8df7d592bc92f6f7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Ulasan pelanggan merupakan opini terhadap kualitas barang atau jasa yang dirasakan konsumen. Ulasan pelanggan mengandung informasi yang berguna bagi konsumen maupun penyedia barang atau jasa. Ketersediaan ulasan pelanggan dalam jumlah besar pada website membutuhkan suatu framework untuk mengekstraksi sentimen secara otomatis. Sebuah ulasan pelanggan sering kali mengandung banyak aspek sehingga Aspect Based Sentiment Analysis (ABSA) harus digunakan untuk mengetahui polaritas masing-masing aspek. Salah satu tugas penting dalam ABSA adalah Aspect Category Detection. Metode machine learning untuk Aspect Category Detection sudah banyak dilakukan pada domain berbahasa Inggris, tetapi pada domain bahasa Indonesia masih sedikit. Makalah ini membandingkan kinerja tiga algoritme machine learning, yaitu Naïve Bayes (NB), Support Vector Machine (SVM), dan Random Forest (RF) pada ulasan pelanggan berbahasa Indonesia menggunakan Term Frequency–Inverse Document Frequency (TF-IDF) sebagai term weighting. Hasil menunjukkan bahwa RF memiliki kinerja paling unggul dibandingkan NB dan SVM pada tiga domain yang berbeda, yaitu restoran, hotel, dan e-commerce, dengan nilai f1-score untuk masing-masing domain adalah 84.3%, 85.7%, dan 89,3%.