Sparse Regression in Cancer Genomics: Comparing Variable Selection and Predictions in Real World Data
Background: Evaluation of gene interaction models in cancer genomics is challenging, as the true distribution is uncertain. Previous analyses have benchmarked models using synthetic data or databases of experimentally verified interactions – approaches which are susceptible to misrepresentation and...
Guardado en:
Autores principales: | Robert J O’Shea, Sophia Tsoka, Gary JR Cook, Vicky Goh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SAGE Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d2c6613ebad14b04be7cce97ef0de93f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Leukemia prediction using sparse logistic regression.
por: Tapio Manninen, et al.
Publicado: (2013) -
BANDWIDTH REDUCTION ON SPARSE MATRICES BY INTRODUCING NEW VARIABLES
por: Glüge,Rainer
Publicado: (2010) -
Natural images are reliably represented by sparse and variable populations of neurons in visual cortex
por: Takashi Yoshida, et al.
Publicado: (2020) -
Directed self-assembly of fluorescence responsive nanoparticles and their use for real-time surface and cellular imaging
por: Shane Cheung, et al.
Publicado: (2017) -
Simulated Annealing Assisted Sparse Array Selection Utilizing Deep Learning
por: Steven Wandale, et al.
Publicado: (2021)