Optimal Lp–Lq-Type Decay Rates of Solutions to the Three-Dimensional Nonisentropic Compressible Euler Equations with Relaxation

In this paper, we consider the three-dimensional Cauchy problem of the nonisentropic compressible Euler equations with relaxation. Following the method of Wu et al. (2021, Adv. Math. Phys. Art. ID 5512285, pp. 1–13), we show the existence and uniqueness of the global small Hkk⩾3 solution only under...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rong Shen, Yong Wang
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/d2ccc0ddfd754099824804ef455e0bfb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d2ccc0ddfd754099824804ef455e0bfb
record_format dspace
spelling oai:doaj.org-article:d2ccc0ddfd754099824804ef455e0bfb2021-11-22T01:10:15ZOptimal Lp–Lq-Type Decay Rates of Solutions to the Three-Dimensional Nonisentropic Compressible Euler Equations with Relaxation1687-913910.1155/2021/8636092https://doaj.org/article/d2ccc0ddfd754099824804ef455e0bfb2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/8636092https://doaj.org/toc/1687-9139In this paper, we consider the three-dimensional Cauchy problem of the nonisentropic compressible Euler equations with relaxation. Following the method of Wu et al. (2021, Adv. Math. Phys. Art. ID 5512285, pp. 1–13), we show the existence and uniqueness of the global small Hkk⩾3 solution only under the condition of smallness of the H3 norm of the initial data. Moreover, we use a pure energy method with a time-weighted argument to prove the optimal Lp–Lq1⩽p⩽2,2⩽q⩽∞-type decay rates of the solution and its higher-order derivatives.Rong ShenYong WangHindawi LimitedarticlePhysicsQC1-999ENAdvances in Mathematical Physics, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Rong Shen
Yong Wang
Optimal Lp–Lq-Type Decay Rates of Solutions to the Three-Dimensional Nonisentropic Compressible Euler Equations with Relaxation
description In this paper, we consider the three-dimensional Cauchy problem of the nonisentropic compressible Euler equations with relaxation. Following the method of Wu et al. (2021, Adv. Math. Phys. Art. ID 5512285, pp. 1–13), we show the existence and uniqueness of the global small Hkk⩾3 solution only under the condition of smallness of the H3 norm of the initial data. Moreover, we use a pure energy method with a time-weighted argument to prove the optimal Lp–Lq1⩽p⩽2,2⩽q⩽∞-type decay rates of the solution and its higher-order derivatives.
format article
author Rong Shen
Yong Wang
author_facet Rong Shen
Yong Wang
author_sort Rong Shen
title Optimal Lp–Lq-Type Decay Rates of Solutions to the Three-Dimensional Nonisentropic Compressible Euler Equations with Relaxation
title_short Optimal Lp–Lq-Type Decay Rates of Solutions to the Three-Dimensional Nonisentropic Compressible Euler Equations with Relaxation
title_full Optimal Lp–Lq-Type Decay Rates of Solutions to the Three-Dimensional Nonisentropic Compressible Euler Equations with Relaxation
title_fullStr Optimal Lp–Lq-Type Decay Rates of Solutions to the Three-Dimensional Nonisentropic Compressible Euler Equations with Relaxation
title_full_unstemmed Optimal Lp–Lq-Type Decay Rates of Solutions to the Three-Dimensional Nonisentropic Compressible Euler Equations with Relaxation
title_sort optimal lp–lq-type decay rates of solutions to the three-dimensional nonisentropic compressible euler equations with relaxation
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/d2ccc0ddfd754099824804ef455e0bfb
work_keys_str_mv AT rongshen optimallplqtypedecayratesofsolutionstothethreedimensionalnonisentropiccompressibleeulerequationswithrelaxation
AT yongwang optimallplqtypedecayratesofsolutionstothethreedimensionalnonisentropiccompressibleeulerequationswithrelaxation
_version_ 1718418370287632384