Artist-Net: Decorating the Inferred Content With Unified Style for Image Inpainting
Recently, context learning networks have shown promise in filling large holes in natural images. These networks can decorate the predicted contents with high-frequency details by borrowing or copying neural information from the known region. However, this operation might introduce undesired content...
Guardado en:
Autores principales: | Liang Liao, Ruimin Hu, Jing Xiao, Zhongyuan Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d2d758844a1b48b6a09a7d4b1ef2b6a2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Inferring Users’ Social Roles with a Multi-Level Graph Neural Network Model
por: Chunrui Zhang, et al.
Publicado: (2021) -
Comparación de Uso del Patrón de Diseño Decorator y la Programación Orientada a Aspectos en .NET para Modularizar Incumbencias Cruzadas
por: Pereira-Vásquez,Cristian A, et al.
Publicado: (2017) -
Unhomely: Redefining the British Decorative Arts
por: Iris Moon
Publicado: (2021) -
Discovering Latent Representations of Relations for Interacting Systems
por: Dohae Lee, et al.
Publicado: (2021) -
Semantics of Symbolic Decoration on Macedonian Traditional Movable Furniture from 19th Century
por: Elena Nikoljski Panevski
Publicado: (2016)