Artist-Net: Decorating the Inferred Content With Unified Style for Image Inpainting
Recently, context learning networks have shown promise in filling large holes in natural images. These networks can decorate the predicted contents with high-frequency details by borrowing or copying neural information from the known region. However, this operation might introduce undesired content...
Enregistré dans:
Auteurs principaux: | Liang Liao, Ruimin Hu, Jing Xiao, Zhongyuan Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d2d758844a1b48b6a09a7d4b1ef2b6a2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Inferring Users’ Social Roles with a Multi-Level Graph Neural Network Model
par: Chunrui Zhang, et autres
Publié: (2021) -
Comparación de Uso del Patrón de Diseño Decorator y la Programación Orientada a Aspectos en .NET para Modularizar Incumbencias Cruzadas
par: Pereira-Vásquez,Cristian A, et autres
Publié: (2017) -
Unhomely: Redefining the British Decorative Arts
par: Iris Moon
Publié: (2021) -
Discovering Latent Representations of Relations for Interacting Systems
par: Dohae Lee, et autres
Publié: (2021) -
Semantics of Symbolic Decoration on Macedonian Traditional Movable Furniture from 19th Century
par: Elena Nikoljski Panevski
Publié: (2016)