Lung nodule detection in chest X-rays using synthetic ground-truth data comparing CNN-based diagnosis to human performance
Abstract We present a method to generate synthetic thorax radiographs with realistic nodules from CT scans, and a perfect ground truth knowledge. We evaluated the detection performance of nine radiologists and two convolutional neural networks in a reader study. Nodules were artificially inserted in...
Guardado en:
Autores principales: | Manuel Schultheiss, Philipp Schmette, Jannis Bodden, Juliane Aichele, Christina Müller-Leisse, Felix G. Gassert, Florian T. Gassert, Joshua F. Gawlitza, Felix C. Hofmann, Daniel Sasse, Claudio E. von Schacky, Sebastian Ziegelmayer, Fabio De Marco, Bernhard Renger, Marcus R. Makowski, Franz Pfeiffer, Daniela Pfeiffer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d2e234157a904202804449b039ffdf57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Correlation of image quality parameters with tube voltage in X-ray dark-field chest radiography: a phantom study
por: Andreas P. Sauter, et al.
Publicado: (2021) -
Pulmonary Nodule Detection Based on Faster R-CNN With Adaptive Anchor Box
por: Chi Cuong Nguyen, et al.
Publicado: (2021) -
Is the combination of bilateral pulmonary nodules and mosaic attenuation on chest CT specific for DIPNECH?
por: Bilal F. Samhouri, et al.
Publicado: (2021) -
Optimization of tube voltage in X-ray dark-field chest radiography
por: Andreas P. Sauter, et al.
Publicado: (2019) -
Not Truth But Tolerance
por: Sherman A. Jackson
Publicado: (2011)