Inverse renormalization group based on image super-resolution using deep convolutional networks
Abstract The inverse renormalization group is studied based on the image super-resolution using the deep convolutional neural networks. We consider the improved correlation configuration instead of spin configuration for the spin models, such as the two-dimensional Ising and three-state Potts models...
Enregistré dans:
Auteurs principaux: | Kenta Shiina, Hiroyuki Mori, Yusuke Tomita, Hwee Kuan Lee, Yutaka Okabe |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d2e41502a62d479aaffc511f66a30d26 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Renormalization group theory of molecular dynamics
par: Daiji Ichishima, et autres
Publié: (2021) -
Tensor Renormalization Group for interacting quantum fields
par: Manuel Campos, et autres
Publié: (2021) -
A Wavelet-Based Asymmetric Convolution Network for Single Image Super-Resolution
par: Wanxu Zhang, et autres
Publié: (2021) -
Multi-scale Xception based depthwise separable convolution for single image super-resolution.
par: Wazir Muhammad, et autres
Publié: (2021) -
Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization
par: Qianyi Li, et autres
Publié: (2021)