A convolutional neural network for defect classification in Bragg coherent X-ray diffraction
Abstract Coherent diffraction imaging enables the imaging of individual defects, such as dislocations or stacking faults, in materials. These defects and their surrounding elastic strain fields have a critical influence on the macroscopic properties and functionality of materials. However, their ide...
Guardado en:
Autores principales: | Bruce Lim, Ewen Bellec, Maxime Dupraz, Steven Leake, Andrea Resta, Alessandro Coati, Michael Sprung, Ehud Almog, Eugen Rabkin, Tobias Schulli, Marie-Ingrid Richard |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d32e14700bf3406999829daa027da33c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A deep convolutional neural network for real-time full profile analysis of big powder diffraction data
por: Hongyang Dong, et al.
Publicado: (2021) -
Deep learning for visualization and novelty detection in large X-ray diffraction datasets
por: Lars Banko, et al.
Publicado: (2021) -
Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries
por: Yuma Iwasaki, et al.
Publicado: (2017) -
Identification of crystal symmetry from noisy diffraction patterns by a shape analysis and deep learning
por: Leslie Ching Ow Tiong, et al.
Publicado: (2020) -
Method for assessing atomic sources of flicker noise in superconducting qubits
por: Almog Reshef, et al.
Publicado: (2021)