Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions
Abstract We study a semilinear fractional order differential inclusion in a separable Banach space E of the form DqCx(t)∈Ax(t)+F(t,x(t)),t∈[0,T], $$ {}^{C}D^{q}x(t)\in Ax(t)+ F\bigl(t,x(t)\bigr),\quad t\in [0,T], $$ where DqC ${}^{C}D^{q}$ is the Caputo fractional derivative of order 0<q<1 $0...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d332611b40f545d9a36f79d240ffce68 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d332611b40f545d9a36f79d240ffce68 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d332611b40f545d9a36f79d240ffce682021-12-02T12:13:25ZExistence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions10.1186/s13663-018-0652-11687-1812https://doaj.org/article/d332611b40f545d9a36f79d240ffce682019-01-01T00:00:00Zhttp://link.springer.com/article/10.1186/s13663-018-0652-1https://doaj.org/toc/1687-1812Abstract We study a semilinear fractional order differential inclusion in a separable Banach space E of the form DqCx(t)∈Ax(t)+F(t,x(t)),t∈[0,T], $$ {}^{C}D^{q}x(t)\in Ax(t)+ F\bigl(t,x(t)\bigr),\quad t\in [0,T], $$ where DqC ${}^{C}D^{q}$ is the Caputo fractional derivative of order 0<q<1 $0 < q < 1$, A:D(A)⊂E→E $A \colon D(A) \subset E \rightarrow E$ is a generator of a C0 $C_{0}$-semigroup, and F:[0,T]×E⊸E $F \colon [0,T] \times E \multimap E$ is a nonlinear multivalued map. By using the method of the generalized translation multivalued operator and a fixed point theorem for condensing multivalued maps, we prove the existence of a mild solution to this inclusion satisfying the nonlocal boundary value condition: x(0)∈Δ(x), $$ x(0)\in \Delta (x), $$ where Δ:C([0,T];E)⊸E $\Delta : C([0,T];E) \multimap E$ is a given multivalued map. The semidiscretization scheme is developed and applied to the approximation of solutions to the considered nonlocal boundary value problem.M. KamenskiiV. ObukhovskiiG. PetrosyanJen-Chih YaoSpringerOpenarticleFractional differential equationSemilinear differential equationCauchy problemApproximationSemidiscretizationIndex of the solution setApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2019, Iss 1, Pp 1-21 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Fractional differential equation Semilinear differential equation Cauchy problem Approximation Semidiscretization Index of the solution set Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 |
spellingShingle |
Fractional differential equation Semilinear differential equation Cauchy problem Approximation Semidiscretization Index of the solution set Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 M. Kamenskii V. Obukhovskii G. Petrosyan Jen-Chih Yao Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions |
description |
Abstract We study a semilinear fractional order differential inclusion in a separable Banach space E of the form DqCx(t)∈Ax(t)+F(t,x(t)),t∈[0,T], $$ {}^{C}D^{q}x(t)\in Ax(t)+ F\bigl(t,x(t)\bigr),\quad t\in [0,T], $$ where DqC ${}^{C}D^{q}$ is the Caputo fractional derivative of order 0<q<1 $0 < q < 1$, A:D(A)⊂E→E $A \colon D(A) \subset E \rightarrow E$ is a generator of a C0 $C_{0}$-semigroup, and F:[0,T]×E⊸E $F \colon [0,T] \times E \multimap E$ is a nonlinear multivalued map. By using the method of the generalized translation multivalued operator and a fixed point theorem for condensing multivalued maps, we prove the existence of a mild solution to this inclusion satisfying the nonlocal boundary value condition: x(0)∈Δ(x), $$ x(0)\in \Delta (x), $$ where Δ:C([0,T];E)⊸E $\Delta : C([0,T];E) \multimap E$ is a given multivalued map. The semidiscretization scheme is developed and applied to the approximation of solutions to the considered nonlocal boundary value problem. |
format |
article |
author |
M. Kamenskii V. Obukhovskii G. Petrosyan Jen-Chih Yao |
author_facet |
M. Kamenskii V. Obukhovskii G. Petrosyan Jen-Chih Yao |
author_sort |
M. Kamenskii |
title |
Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions |
title_short |
Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions |
title_full |
Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions |
title_fullStr |
Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions |
title_full_unstemmed |
Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions |
title_sort |
existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions |
publisher |
SpringerOpen |
publishDate |
2019 |
url |
https://doaj.org/article/d332611b40f545d9a36f79d240ffce68 |
work_keys_str_mv |
AT mkamenskii existenceandapproximationofsolutionstononlocalboundaryvalueproblemsforfractionaldifferentialinclusions AT vobukhovskii existenceandapproximationofsolutionstononlocalboundaryvalueproblemsforfractionaldifferentialinclusions AT gpetrosyan existenceandapproximationofsolutionstononlocalboundaryvalueproblemsforfractionaldifferentialinclusions AT jenchihyao existenceandapproximationofsolutionstononlocalboundaryvalueproblemsforfractionaldifferentialinclusions |
_version_ |
1718394601998385152 |