Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics

Abstract A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Svetoslav Nikolov, Mitchell A. Wood, Attila Cangi, Jean-Bernard Maillet, Mihai-Cosmin Marinica, Aidan P. Thompson, Michael P. Desjarlais, Julien Tranchida
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/d348af2bd3da41768c9cb3ef7706b759
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represent a potential energy surface from which the mechanical forces on the atoms and the precession dynamics of the atomic spins are computed. Both the atomic spin model and the ML-IAP are parametrized on data from first-principles calculations. We demonstrate the efficacy of our data-driven framework across magneto-structural phase transitions by generating a magneto-elastic ML-IAP for α-iron. The combined potential energy surface yields excellent agreement with first-principles magneto-elastic calculations and quantitative predictions of diverse materials properties including bulk modulus, magnetization, and specific heat across the ferromagnetic–paramagnetic phase transition.