Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics

Abstract A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Svetoslav Nikolov, Mitchell A. Wood, Attila Cangi, Jean-Bernard Maillet, Mihai-Cosmin Marinica, Aidan P. Thompson, Michael P. Desjarlais, Julien Tranchida
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/d348af2bd3da41768c9cb3ef7706b759
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d348af2bd3da41768c9cb3ef7706b759
record_format dspace
spelling oai:doaj.org-article:d348af2bd3da41768c9cb3ef7706b7592021-12-02T19:17:04ZData-driven magneto-elastic predictions with scalable classical spin-lattice dynamics10.1038/s41524-021-00617-22057-3960https://doaj.org/article/d348af2bd3da41768c9cb3ef7706b7592021-09-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00617-2https://doaj.org/toc/2057-3960Abstract A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represent a potential energy surface from which the mechanical forces on the atoms and the precession dynamics of the atomic spins are computed. Both the atomic spin model and the ML-IAP are parametrized on data from first-principles calculations. We demonstrate the efficacy of our data-driven framework across magneto-structural phase transitions by generating a magneto-elastic ML-IAP for α-iron. The combined potential energy surface yields excellent agreement with first-principles magneto-elastic calculations and quantitative predictions of diverse materials properties including bulk modulus, magnetization, and specific heat across the ferromagnetic–paramagnetic phase transition.Svetoslav NikolovMitchell A. WoodAttila CangiJean-Bernard MailletMihai-Cosmin MarinicaAidan P. ThompsonMichael P. DesjarlaisJulien TranchidaNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
Svetoslav Nikolov
Mitchell A. Wood
Attila Cangi
Jean-Bernard Maillet
Mihai-Cosmin Marinica
Aidan P. Thompson
Michael P. Desjarlais
Julien Tranchida
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
description Abstract A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represent a potential energy surface from which the mechanical forces on the atoms and the precession dynamics of the atomic spins are computed. Both the atomic spin model and the ML-IAP are parametrized on data from first-principles calculations. We demonstrate the efficacy of our data-driven framework across magneto-structural phase transitions by generating a magneto-elastic ML-IAP for α-iron. The combined potential energy surface yields excellent agreement with first-principles magneto-elastic calculations and quantitative predictions of diverse materials properties including bulk modulus, magnetization, and specific heat across the ferromagnetic–paramagnetic phase transition.
format article
author Svetoslav Nikolov
Mitchell A. Wood
Attila Cangi
Jean-Bernard Maillet
Mihai-Cosmin Marinica
Aidan P. Thompson
Michael P. Desjarlais
Julien Tranchida
author_facet Svetoslav Nikolov
Mitchell A. Wood
Attila Cangi
Jean-Bernard Maillet
Mihai-Cosmin Marinica
Aidan P. Thompson
Michael P. Desjarlais
Julien Tranchida
author_sort Svetoslav Nikolov
title Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
title_short Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
title_full Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
title_fullStr Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
title_full_unstemmed Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
title_sort data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d348af2bd3da41768c9cb3ef7706b759
work_keys_str_mv AT svetoslavnikolov datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics
AT mitchellawood datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics
AT attilacangi datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics
AT jeanbernardmaillet datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics
AT mihaicosminmarinica datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics
AT aidanpthompson datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics
AT michaelpdesjarlais datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics
AT julientranchida datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics
_version_ 1718376939704549376