Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
Abstract A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represe...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d348af2bd3da41768c9cb3ef7706b759 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d348af2bd3da41768c9cb3ef7706b759 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d348af2bd3da41768c9cb3ef7706b7592021-12-02T19:17:04ZData-driven magneto-elastic predictions with scalable classical spin-lattice dynamics10.1038/s41524-021-00617-22057-3960https://doaj.org/article/d348af2bd3da41768c9cb3ef7706b7592021-09-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00617-2https://doaj.org/toc/2057-3960Abstract A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represent a potential energy surface from which the mechanical forces on the atoms and the precession dynamics of the atomic spins are computed. Both the atomic spin model and the ML-IAP are parametrized on data from first-principles calculations. We demonstrate the efficacy of our data-driven framework across magneto-structural phase transitions by generating a magneto-elastic ML-IAP for α-iron. The combined potential energy surface yields excellent agreement with first-principles magneto-elastic calculations and quantitative predictions of diverse materials properties including bulk modulus, magnetization, and specific heat across the ferromagnetic–paramagnetic phase transition.Svetoslav NikolovMitchell A. WoodAttila CangiJean-Bernard MailletMihai-Cosmin MarinicaAidan P. ThompsonMichael P. DesjarlaisJulien TranchidaNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 Svetoslav Nikolov Mitchell A. Wood Attila Cangi Jean-Bernard Maillet Mihai-Cosmin Marinica Aidan P. Thompson Michael P. Desjarlais Julien Tranchida Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics |
description |
Abstract A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represent a potential energy surface from which the mechanical forces on the atoms and the precession dynamics of the atomic spins are computed. Both the atomic spin model and the ML-IAP are parametrized on data from first-principles calculations. We demonstrate the efficacy of our data-driven framework across magneto-structural phase transitions by generating a magneto-elastic ML-IAP for α-iron. The combined potential energy surface yields excellent agreement with first-principles magneto-elastic calculations and quantitative predictions of diverse materials properties including bulk modulus, magnetization, and specific heat across the ferromagnetic–paramagnetic phase transition. |
format |
article |
author |
Svetoslav Nikolov Mitchell A. Wood Attila Cangi Jean-Bernard Maillet Mihai-Cosmin Marinica Aidan P. Thompson Michael P. Desjarlais Julien Tranchida |
author_facet |
Svetoslav Nikolov Mitchell A. Wood Attila Cangi Jean-Bernard Maillet Mihai-Cosmin Marinica Aidan P. Thompson Michael P. Desjarlais Julien Tranchida |
author_sort |
Svetoslav Nikolov |
title |
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics |
title_short |
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics |
title_full |
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics |
title_fullStr |
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics |
title_full_unstemmed |
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics |
title_sort |
data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/d348af2bd3da41768c9cb3ef7706b759 |
work_keys_str_mv |
AT svetoslavnikolov datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics AT mitchellawood datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics AT attilacangi datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics AT jeanbernardmaillet datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics AT mihaicosminmarinica datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics AT aidanpthompson datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics AT michaelpdesjarlais datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics AT julientranchida datadrivenmagnetoelasticpredictionswithscalableclassicalspinlatticedynamics |
_version_ |
1718376939704549376 |