Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
Abstract A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represe...
Guardado en:
Autores principales: | Svetoslav Nikolov, Mitchell A. Wood, Attila Cangi, Jean-Bernard Maillet, Mihai-Cosmin Marinica, Aidan P. Thompson, Michael P. Desjarlais, Julien Tranchida |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d348af2bd3da41768c9cb3ef7706b759 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
por: Cheol Woo Park, et al.
Publicado: (2021) -
Microscopic mechanism of unusual lattice thermal transport in TlInTe2
por: Koushik Pal, et al.
Publicado: (2021) -
Four-dimensional imaging of lattice dynamics using ab-initio simulation
por: Navdeep Rana, et al.
Publicado: (2021) -
Construction of ground-state preserving sparse lattice models for predictive materials simulations
por: Wenxuan Huang, et al.
Publicado: (2017) -
The origin of the lattice thermal conductivity enhancement at the ferroelectric phase transition in GeTe
por: Đorđe Dangić, et al.
Publicado: (2021)