Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics

Abstract A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represe...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Svetoslav Nikolov, Mitchell A. Wood, Attila Cangi, Jean-Bernard Maillet, Mihai-Cosmin Marinica, Aidan P. Thompson, Michael P. Desjarlais, Julien Tranchida
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/d348af2bd3da41768c9cb3ef7706b759
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!