Machine learning can identify newly diagnosed patients with CLL at high risk of infection
Chronic lymphocytic leukemia is an indolent disease, and many patients succumb to infection rather than the direct effects of the disease. Here, the authors use medical records and machine learning to predict the patients that may be at risk of infection, which may enable a change in the course of t...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d34aa0eace4042dc8ea0d505bfcb57d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d34aa0eace4042dc8ea0d505bfcb57d5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d34aa0eace4042dc8ea0d505bfcb57d52021-12-02T15:39:14ZMachine learning can identify newly diagnosed patients with CLL at high risk of infection10.1038/s41467-019-14225-82041-1723https://doaj.org/article/d34aa0eace4042dc8ea0d505bfcb57d52020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-14225-8https://doaj.org/toc/2041-1723Chronic lymphocytic leukemia is an indolent disease, and many patients succumb to infection rather than the direct effects of the disease. Here, the authors use medical records and machine learning to predict the patients that may be at risk of infection, which may enable a change in the course of their treatment.Rudi AgiusChristian BrieghelMichael A. AndersenAlexander T. PearsonBruno LedergerberAlessandro Cozzi-LepriYoram LouzounChristen L. AndersenJacob BergstedtJakob H. von StemannMette JørgensenMan-Hung Eric TangMagnus FontesJasmin BahloCarmen D. HerlingMichael HallekJens LundgrenCameron Ross MacPhersonJan LarsenCarsten U. NiemannNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-17 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Rudi Agius Christian Brieghel Michael A. Andersen Alexander T. Pearson Bruno Ledergerber Alessandro Cozzi-Lepri Yoram Louzoun Christen L. Andersen Jacob Bergstedt Jakob H. von Stemann Mette Jørgensen Man-Hung Eric Tang Magnus Fontes Jasmin Bahlo Carmen D. Herling Michael Hallek Jens Lundgren Cameron Ross MacPherson Jan Larsen Carsten U. Niemann Machine learning can identify newly diagnosed patients with CLL at high risk of infection |
description |
Chronic lymphocytic leukemia is an indolent disease, and many patients succumb to infection rather than the direct effects of the disease. Here, the authors use medical records and machine learning to predict the patients that may be at risk of infection, which may enable a change in the course of their treatment. |
format |
article |
author |
Rudi Agius Christian Brieghel Michael A. Andersen Alexander T. Pearson Bruno Ledergerber Alessandro Cozzi-Lepri Yoram Louzoun Christen L. Andersen Jacob Bergstedt Jakob H. von Stemann Mette Jørgensen Man-Hung Eric Tang Magnus Fontes Jasmin Bahlo Carmen D. Herling Michael Hallek Jens Lundgren Cameron Ross MacPherson Jan Larsen Carsten U. Niemann |
author_facet |
Rudi Agius Christian Brieghel Michael A. Andersen Alexander T. Pearson Bruno Ledergerber Alessandro Cozzi-Lepri Yoram Louzoun Christen L. Andersen Jacob Bergstedt Jakob H. von Stemann Mette Jørgensen Man-Hung Eric Tang Magnus Fontes Jasmin Bahlo Carmen D. Herling Michael Hallek Jens Lundgren Cameron Ross MacPherson Jan Larsen Carsten U. Niemann |
author_sort |
Rudi Agius |
title |
Machine learning can identify newly diagnosed patients with CLL at high risk of infection |
title_short |
Machine learning can identify newly diagnosed patients with CLL at high risk of infection |
title_full |
Machine learning can identify newly diagnosed patients with CLL at high risk of infection |
title_fullStr |
Machine learning can identify newly diagnosed patients with CLL at high risk of infection |
title_full_unstemmed |
Machine learning can identify newly diagnosed patients with CLL at high risk of infection |
title_sort |
machine learning can identify newly diagnosed patients with cll at high risk of infection |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/d34aa0eace4042dc8ea0d505bfcb57d5 |
work_keys_str_mv |
AT rudiagius machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT christianbrieghel machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT michaelaandersen machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT alexandertpearson machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT brunoledergerber machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT alessandrocozzilepri machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT yoramlouzoun machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT christenlandersen machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT jacobbergstedt machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT jakobhvonstemann machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT mettejørgensen machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT manhungerictang machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT magnusfontes machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT jasminbahlo machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT carmendherling machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT michaelhallek machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT jenslundgren machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT cameronrossmacpherson machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT janlarsen machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection AT carstenuniemann machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection |
_version_ |
1718385960669937664 |