Machine learning can identify newly diagnosed patients with CLL at high risk of infection

Chronic lymphocytic leukemia is an indolent disease, and many patients succumb to infection rather than the direct effects of the disease. Here, the authors use medical records and machine learning to predict the patients that may be at risk of infection, which may enable a change in the course of t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rudi Agius, Christian Brieghel, Michael A. Andersen, Alexander T. Pearson, Bruno Ledergerber, Alessandro Cozzi-Lepri, Yoram Louzoun, Christen L. Andersen, Jacob Bergstedt, Jakob H. von Stemann, Mette Jørgensen, Man-Hung Eric Tang, Magnus Fontes, Jasmin Bahlo, Carmen D. Herling, Michael Hallek, Jens Lundgren, Cameron Ross MacPherson, Jan Larsen, Carsten U. Niemann
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/d34aa0eace4042dc8ea0d505bfcb57d5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d34aa0eace4042dc8ea0d505bfcb57d5
record_format dspace
spelling oai:doaj.org-article:d34aa0eace4042dc8ea0d505bfcb57d52021-12-02T15:39:14ZMachine learning can identify newly diagnosed patients with CLL at high risk of infection10.1038/s41467-019-14225-82041-1723https://doaj.org/article/d34aa0eace4042dc8ea0d505bfcb57d52020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-14225-8https://doaj.org/toc/2041-1723Chronic lymphocytic leukemia is an indolent disease, and many patients succumb to infection rather than the direct effects of the disease. Here, the authors use medical records and machine learning to predict the patients that may be at risk of infection, which may enable a change in the course of their treatment.Rudi AgiusChristian BrieghelMichael A. AndersenAlexander T. PearsonBruno LedergerberAlessandro Cozzi-LepriYoram LouzounChristen L. AndersenJacob BergstedtJakob H. von StemannMette JørgensenMan-Hung Eric TangMagnus FontesJasmin BahloCarmen D. HerlingMichael HallekJens LundgrenCameron Ross MacPhersonJan LarsenCarsten U. NiemannNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-17 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Rudi Agius
Christian Brieghel
Michael A. Andersen
Alexander T. Pearson
Bruno Ledergerber
Alessandro Cozzi-Lepri
Yoram Louzoun
Christen L. Andersen
Jacob Bergstedt
Jakob H. von Stemann
Mette Jørgensen
Man-Hung Eric Tang
Magnus Fontes
Jasmin Bahlo
Carmen D. Herling
Michael Hallek
Jens Lundgren
Cameron Ross MacPherson
Jan Larsen
Carsten U. Niemann
Machine learning can identify newly diagnosed patients with CLL at high risk of infection
description Chronic lymphocytic leukemia is an indolent disease, and many patients succumb to infection rather than the direct effects of the disease. Here, the authors use medical records and machine learning to predict the patients that may be at risk of infection, which may enable a change in the course of their treatment.
format article
author Rudi Agius
Christian Brieghel
Michael A. Andersen
Alexander T. Pearson
Bruno Ledergerber
Alessandro Cozzi-Lepri
Yoram Louzoun
Christen L. Andersen
Jacob Bergstedt
Jakob H. von Stemann
Mette Jørgensen
Man-Hung Eric Tang
Magnus Fontes
Jasmin Bahlo
Carmen D. Herling
Michael Hallek
Jens Lundgren
Cameron Ross MacPherson
Jan Larsen
Carsten U. Niemann
author_facet Rudi Agius
Christian Brieghel
Michael A. Andersen
Alexander T. Pearson
Bruno Ledergerber
Alessandro Cozzi-Lepri
Yoram Louzoun
Christen L. Andersen
Jacob Bergstedt
Jakob H. von Stemann
Mette Jørgensen
Man-Hung Eric Tang
Magnus Fontes
Jasmin Bahlo
Carmen D. Herling
Michael Hallek
Jens Lundgren
Cameron Ross MacPherson
Jan Larsen
Carsten U. Niemann
author_sort Rudi Agius
title Machine learning can identify newly diagnosed patients with CLL at high risk of infection
title_short Machine learning can identify newly diagnosed patients with CLL at high risk of infection
title_full Machine learning can identify newly diagnosed patients with CLL at high risk of infection
title_fullStr Machine learning can identify newly diagnosed patients with CLL at high risk of infection
title_full_unstemmed Machine learning can identify newly diagnosed patients with CLL at high risk of infection
title_sort machine learning can identify newly diagnosed patients with cll at high risk of infection
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/d34aa0eace4042dc8ea0d505bfcb57d5
work_keys_str_mv AT rudiagius machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT christianbrieghel machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT michaelaandersen machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT alexandertpearson machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT brunoledergerber machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT alessandrocozzilepri machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT yoramlouzoun machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT christenlandersen machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT jacobbergstedt machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT jakobhvonstemann machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT mettejørgensen machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT manhungerictang machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT magnusfontes machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT jasminbahlo machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT carmendherling machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT michaelhallek machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT jenslundgren machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT cameronrossmacpherson machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT janlarsen machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
AT carstenuniemann machinelearningcanidentifynewlydiagnosedpatientswithcllathighriskofinfection
_version_ 1718385960669937664