Machine learning can identify newly diagnosed patients with CLL at high risk of infection
Chronic lymphocytic leukemia is an indolent disease, and many patients succumb to infection rather than the direct effects of the disease. Here, the authors use medical records and machine learning to predict the patients that may be at risk of infection, which may enable a change in the course of t...
Guardado en:
Autores principales: | Rudi Agius, Christian Brieghel, Michael A. Andersen, Alexander T. Pearson, Bruno Ledergerber, Alessandro Cozzi-Lepri, Yoram Louzoun, Christen L. Andersen, Jacob Bergstedt, Jakob H. von Stemann, Mette Jørgensen, Man-Hung Eric Tang, Magnus Fontes, Jasmin Bahlo, Carmen D. Herling, Michael Hallek, Jens Lundgren, Cameron Ross MacPherson, Jan Larsen, Carsten U. Niemann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d34aa0eace4042dc8ea0d505bfcb57d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Obinutuzumab in Allogeneic Transplantation for CLL and Richter’s Transformation in the Age of Targeted Therapies
por: Natali Pflug, et al.
Publicado: (2021) -
BTLA Expression in CLL: Epigenetic Regulation and Impact on CLL B Cell Proliferation and Ability to IL-4 Production
por: Lidia Karabon, et al.
Publicado: (2021) -
Biology and Treatment of High-Risk CLL: Significance of Complex Karyotype
por: Thomas Chatzikonstantinou, et al.
Publicado: (2021) -
The Impact of Age on Survival in CLL Patients Receiving Ibrutinib as Initial Therapy
por: Ujjani C, et al.
Publicado: (2020) -
Ibrutinib protects T cells in patients with CLL from proliferation-induced senescence
por: Joanne E. Davis, et al.
Publicado: (2021)