Approximate distance correlation for selecting highly interrelated genes across datasets.
With the rapid accumulation of biological omics datasets, decoding the underlying relationships of cross-dataset genes becomes an important issue. Previous studies have attempted to identify differentially expressed genes across datasets. However, it is hard for them to detect interrelated ones. Mor...
Guardado en:
Autores principales: | Qunlun Shen, Shihua Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d36196125ac841a5b281334871558a57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Approximate distance correlation for selecting highly interrelated genes across datasets
por: Qunlun Shen, et al.
Publicado: (2021) -
Approximate Bayesian computation.
por: Mikael Sunnåker, et al.
Publicado: (2013) -
Prioritizing and characterizing functionally relevant genes across human tissues.
por: Gowthami Somepalli, et al.
Publicado: (2021) -
Increased expression of peptides from non-coding genes in cancer proteomics datasets suggests potential tumor neoantigens
por: Rong Xiang, et al.
Publicado: (2021) -
A mixture of delta-rules approximation to bayesian inference in change-point problems.
por: Robert C Wilson, et al.
Publicado: (2013)