Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals
Background. A new instrumentation exploiting magneto-dynamic technology (mallet) proposed for implant site preparation was investigated. Methods. In the tibias of three minipigs, two sites were prepared by mallet and two by drill technique. Primary stability (ISQ) was detected after implant position...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d3658f1973354138a9fedb093baddf78 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d3658f1973354138a9fedb093baddf78 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d3658f1973354138a9fedb093baddf782021-11-25T18:14:56ZBiomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals10.3390/ma142269451996-1944https://doaj.org/article/d3658f1973354138a9fedb093baddf782021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/22/6945https://doaj.org/toc/1996-1944Background. A new instrumentation exploiting magneto-dynamic technology (mallet) proposed for implant site preparation was investigated. Methods. In the tibias of three minipigs, two sites were prepared by mallet and two by drill technique. Primary stability (ISQ) was detected after implant positioning (T0) and at 14 days (T14). X-rays and computed tomography were performed. At T14, bone samples were utilized for histological and biomolecular analyses. Results. In mallet sites, histological evaluations evidenced a significant increase in the newly formed bone, osteoblast number, and a smaller quantity of fibrous tissue. These results agree with the significant BMP-4 augmentation and the positive trend in other osteogenic factors (biological and radiological investigations). Major, albeit IL-10-controlled, inflammation was present. For both techniques, at T14 a significant ISQ increase was evidenced, but no significant difference was observed at T0 and T14 between the mallet and drill techniques. In mallet sites, lateral bone condensation was observed on computed tomography. Conclusions. Using biological, histological, clinical, and radiological analyses, this study first shows that the mallet technique is effective for implant site preparation. Based on its ability to cause osseocondensation and improve newly formed bone, mallet technology should be chosen in all clinical cases of poor bone quality.Gianmario SchieranoDomenico BaldiBruno PeironeMitzy Mauthe von DegerfeldRoberto NavoneAlberto BragoniJacopo ColomboRiccardo AutelliGiuliana MuzioMDPI AGarticledental implantsmallet techniquedrill techniqueimplant stability quotientosteogenesisinflammationTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6945, p 6945 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
dental implants mallet technique drill technique implant stability quotient osteogenesis inflammation Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
spellingShingle |
dental implants mallet technique drill technique implant stability quotient osteogenesis inflammation Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 Gianmario Schierano Domenico Baldi Bruno Peirone Mitzy Mauthe von Degerfeld Roberto Navone Alberto Bragoni Jacopo Colombo Riccardo Autelli Giuliana Muzio Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
description |
Background. A new instrumentation exploiting magneto-dynamic technology (mallet) proposed for implant site preparation was investigated. Methods. In the tibias of three minipigs, two sites were prepared by mallet and two by drill technique. Primary stability (ISQ) was detected after implant positioning (T0) and at 14 days (T14). X-rays and computed tomography were performed. At T14, bone samples were utilized for histological and biomolecular analyses. Results. In mallet sites, histological evaluations evidenced a significant increase in the newly formed bone, osteoblast number, and a smaller quantity of fibrous tissue. These results agree with the significant BMP-4 augmentation and the positive trend in other osteogenic factors (biological and radiological investigations). Major, albeit IL-10-controlled, inflammation was present. For both techniques, at T14 a significant ISQ increase was evidenced, but no significant difference was observed at T0 and T14 between the mallet and drill techniques. In mallet sites, lateral bone condensation was observed on computed tomography. Conclusions. Using biological, histological, clinical, and radiological analyses, this study first shows that the mallet technique is effective for implant site preparation. Based on its ability to cause osseocondensation and improve newly formed bone, mallet technology should be chosen in all clinical cases of poor bone quality. |
format |
article |
author |
Gianmario Schierano Domenico Baldi Bruno Peirone Mitzy Mauthe von Degerfeld Roberto Navone Alberto Bragoni Jacopo Colombo Riccardo Autelli Giuliana Muzio |
author_facet |
Gianmario Schierano Domenico Baldi Bruno Peirone Mitzy Mauthe von Degerfeld Roberto Navone Alberto Bragoni Jacopo Colombo Riccardo Autelli Giuliana Muzio |
author_sort |
Gianmario Schierano |
title |
Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
title_short |
Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
title_full |
Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
title_fullStr |
Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
title_full_unstemmed |
Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
title_sort |
biomolecular, histological, clinical, and radiological analyses of dental implant bone sites prepared using magnetic mallet technology: a pilot study in animals |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/d3658f1973354138a9fedb093baddf78 |
work_keys_str_mv |
AT gianmarioschierano biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT domenicobaldi biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT brunopeirone biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT mitzymauthevondegerfeld biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT robertonavone biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT albertobragoni biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT jacopocolombo biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT riccardoautelli biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT giulianamuzio biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals |
_version_ |
1718411467948032000 |