De novo compartment deconvolution and weight estimation of tumor samples using DECODER
Separating different cell compartments from bulk gene expression data can be challenging. Here the authors present DECODER, which can perform de novo deconvolutions on non-negative matrices including microarray, RNA-seq and ATAC-seq data sets.
Guardado en:
Autores principales: | Xianlu Laura Peng, Richard A. Moffitt, Robert J. Torphy, Keith E. Volmar, Jen Jen Yeh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d36eff381c324e13b089aca37650d569 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples
por: Yao Xiao, et al.
Publicado: (2020) -
Two-stage, in silico deconvolution of the lymphocyte compartment of the peripheral whole blood transcriptome in the context of acute kidney allograft rejection.
por: Casey P Shannon, et al.
Publicado: (2014) -
Deconvoluting kernel density estimation and regression for locally differentially private data
por: Farhad Farokhi
Publicado: (2020) -
Weighted Decoding for the Competence Reliability Problem of ECOC Multiclass Classification
por: Lei Lei, et al.
Publicado: (2021) -
Estimating regional pulmonary blood flow in EIT with regularized deconvolution with a Tikhonov regularization
por: Augustin Xenia, et al.
Publicado: (2020)