An optimal feed-forward artificial neural network model and a new empirical correlation for prediction of the relative viscosity of Al2O3-engine oil nanofluid
Abstract This study presents the design of an artificial neural network (ANN) to evaluate and predict the viscosity behavior of Al2O3/10W40 nanofluid at different temperatures, shear rates, and volume fraction of nanoparticles. Nanofluid viscosity ( $${\mu }_{nf}$$ μ nf ) is evaluated at volume frac...
Guardado en:
Autores principales: | Mohammad Hemmat Esfe, Davood Toghraie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d3741b8276c24aa1acaea771a2cedcff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A well-trained artificial neural network for predicting the rheological behavior of MWCNT–Al2O3 (30–70%)/oil SAE40 hybrid nanofluid
por: Mohammad Hemmat Esfe, et al.
Publicado: (2021) -
Development of Acoustic Emission Viscosity Model for Measuring Engine Oil Viscosity Relationship with Engine Oil In-Service Age
por: Othman Inayatullah, et al.
Publicado: (2010) -
EXPERIMENTAL INVESTIGATION AND MECHANISM ANALYSIS: EFFECT OF CONCENTRATION AND TEMPERATURE ON THE VISCOSITY OF NOVEL MWCNT-MUSTARD OIL NANOFLUID
por: Vignesh,V., et al.
Publicado: (2020) -
Electrical Load Demand Forecasting Using Feed-Forward Neural Networks
por: Eduardo Machado, et al.
Publicado: (2021) -
Estimation of Date Syrup Viscosity using Machine Vision and Artificial Neural Network
por: A. A Jafari, et al.
Publicado: (2018)