A calibrated deep learning ensemble for abnormality detection in musculoskeletal radiographs
Abstract Musculoskeletal disorders affect the locomotor system and are the leading contributor to disability worldwide. Patients suffer chronic pain and limitations in mobility, dexterity, and functional ability. Musculoskeletal (bone) X-ray is an essential tool in diagnosing the abnormalities. In r...
Guardado en:
Autores principales: | Minliang He, Xuming Wang, Yijun Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d37be2c024164cde9ab10471a91000f2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs
por: Rebecca M. Jones, et al.
Publicado: (2020) -
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
por: Po-Chih Kuo, et al.
Publicado: (2021) -
Deep learning for early dental caries detection in bitewing radiographs
por: Shinae Lee, et al.
Publicado: (2021) -
Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19
por: Zaid Nabulsi, et al.
Publicado: (2021) -
Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs
por: Yu-Cheng Yeh, et al.
Publicado: (2021)