A calibrated deep learning ensemble for abnormality detection in musculoskeletal radiographs
Abstract Musculoskeletal disorders affect the locomotor system and are the leading contributor to disability worldwide. Patients suffer chronic pain and limitations in mobility, dexterity, and functional ability. Musculoskeletal (bone) X-ray is an essential tool in diagnosing the abnormalities. In r...
Enregistré dans:
Auteurs principaux: | Minliang He, Xuming Wang, Yijun Zhao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d37be2c024164cde9ab10471a91000f2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs
par: Rebecca M. Jones, et autres
Publié: (2020) -
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
par: Po-Chih Kuo, et autres
Publié: (2021) -
Deep learning for early dental caries detection in bitewing radiographs
par: Shinae Lee, et autres
Publié: (2021) -
Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19
par: Zaid Nabulsi, et autres
Publié: (2021) -
Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs
par: Yu-Cheng Yeh, et autres
Publié: (2021)