Predicting Autonomous Shuttle Acceptance in Older Drivers Based on Technology Readiness/Use/Barriers, Life Space, Driving Habits, and Cognition

Shared autonomous vehicle services (i. e., automated shuttles, AS) are being deployed globally and may improve older adults (>65 years old) mobility, independence, and participation in the community. However, AS must be user friendly and provide safety benefits if older drivers are to accept...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sherrilene Classen, Justin R. Mason, Seung Woo Hwangbo, Virginia Sisiopiku
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/d391a3d340244bc7aeb19e109e4a129e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d391a3d340244bc7aeb19e109e4a129e
record_format dspace
spelling oai:doaj.org-article:d391a3d340244bc7aeb19e109e4a129e2021-12-02T06:13:01ZPredicting Autonomous Shuttle Acceptance in Older Drivers Based on Technology Readiness/Use/Barriers, Life Space, Driving Habits, and Cognition1664-229510.3389/fneur.2021.798762https://doaj.org/article/d391a3d340244bc7aeb19e109e4a129e2021-12-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fneur.2021.798762/fullhttps://doaj.org/toc/1664-2295Shared autonomous vehicle services (i. e., automated shuttles, AS) are being deployed globally and may improve older adults (>65 years old) mobility, independence, and participation in the community. However, AS must be user friendly and provide safety benefits if older drivers are to accept and adopt this technology. Current potential barriers to their acceptance of AS include a lack of trust in the systems and hesitation to adopt emerging technology. Technology readiness, perceived ease of use, perceived barriers, and intention to use the technology, are particularly important constructs to consider in older adults' acceptance and adoption practices of AS. Likewise, person factors, i.e., age, life space mobility, driving habits, and cognition predict driving safety among older drivers. However, we are not sure if and how these factors may also predict older adults' intention to use the AS. In the current study, we examined responses from 104 older drivers (Mage = 74.3, SDage = 5.9) who completed the Automated Vehicle User Perception Survey (AVUPS) before and after riding in an on-road automated shuttle (EasyMile EZ10). The study participants also provided information through the Technology Readiness Index, Technology Acceptance Measure, Life Space Questionnaire, Driving Habits Questionnaire, Trail-making Test Part A and Part B (TMT A and TMT B). Older drivers' age, cognitive scores (i.e., TMT B), driving habits (i.e., crashes and/or citations, exposure, and difficulty of driving) and life space (i.e., how far older adults venture from their primary dwelling) were entered into four models to predict their acceptance of AVs—operationalized according to the subscales (i.e., intention to use, perceived barriers, and well-being) and the total acceptance score of the AVUPS. Next, a partial least squares structural equation model (PLS-SEM) elucidated the relationships between, technology readiness, perceived ease of use, barriers to AV acceptance, life space, crashes and/or citations, driving exposure, driving difficulty, cognition, and intention to use AS. The regression models indicated that neither age nor cognition (TMT B) significantly predicted older drivers' perceptions of AVs; but their self-reported driving difficulty (p = 0.019) predicted their intention to use AVs: R2 = 6.18%, F (2,101) = 4.554, p = 0.040. Therefore, intention to use was the dependent variable in the subsequent PLS-SEM. Findings from the PLS-SEM (R2 = 0.467) indicated the only statistically significant predictors of intention to use were technology readiness (β = 0.247, CI = 0.087-0.411) and barriers to AV acceptance (β = −0.504, CI = 0.285-0.692). These novel findings provide evidence suggesting that technology readiness and barriers must be better understood if older drivers are to accept and adopt AS.Sherrilene ClassenJustin R. MasonSeung Woo HwangboVirginia SisiopikuFrontiers Media S.A.articleolder driverspredictorsacceptanceautomated shuttlebarriersexecutive functionNeurology. Diseases of the nervous systemRC346-429ENFrontiers in Neurology, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic older drivers
predictors
acceptance
automated shuttle
barriers
executive function
Neurology. Diseases of the nervous system
RC346-429
spellingShingle older drivers
predictors
acceptance
automated shuttle
barriers
executive function
Neurology. Diseases of the nervous system
RC346-429
Sherrilene Classen
Justin R. Mason
Seung Woo Hwangbo
Virginia Sisiopiku
Predicting Autonomous Shuttle Acceptance in Older Drivers Based on Technology Readiness/Use/Barriers, Life Space, Driving Habits, and Cognition
description Shared autonomous vehicle services (i. e., automated shuttles, AS) are being deployed globally and may improve older adults (>65 years old) mobility, independence, and participation in the community. However, AS must be user friendly and provide safety benefits if older drivers are to accept and adopt this technology. Current potential barriers to their acceptance of AS include a lack of trust in the systems and hesitation to adopt emerging technology. Technology readiness, perceived ease of use, perceived barriers, and intention to use the technology, are particularly important constructs to consider in older adults' acceptance and adoption practices of AS. Likewise, person factors, i.e., age, life space mobility, driving habits, and cognition predict driving safety among older drivers. However, we are not sure if and how these factors may also predict older adults' intention to use the AS. In the current study, we examined responses from 104 older drivers (Mage = 74.3, SDage = 5.9) who completed the Automated Vehicle User Perception Survey (AVUPS) before and after riding in an on-road automated shuttle (EasyMile EZ10). The study participants also provided information through the Technology Readiness Index, Technology Acceptance Measure, Life Space Questionnaire, Driving Habits Questionnaire, Trail-making Test Part A and Part B (TMT A and TMT B). Older drivers' age, cognitive scores (i.e., TMT B), driving habits (i.e., crashes and/or citations, exposure, and difficulty of driving) and life space (i.e., how far older adults venture from their primary dwelling) were entered into four models to predict their acceptance of AVs—operationalized according to the subscales (i.e., intention to use, perceived barriers, and well-being) and the total acceptance score of the AVUPS. Next, a partial least squares structural equation model (PLS-SEM) elucidated the relationships between, technology readiness, perceived ease of use, barriers to AV acceptance, life space, crashes and/or citations, driving exposure, driving difficulty, cognition, and intention to use AS. The regression models indicated that neither age nor cognition (TMT B) significantly predicted older drivers' perceptions of AVs; but their self-reported driving difficulty (p = 0.019) predicted their intention to use AVs: R2 = 6.18%, F (2,101) = 4.554, p = 0.040. Therefore, intention to use was the dependent variable in the subsequent PLS-SEM. Findings from the PLS-SEM (R2 = 0.467) indicated the only statistically significant predictors of intention to use were technology readiness (β = 0.247, CI = 0.087-0.411) and barriers to AV acceptance (β = −0.504, CI = 0.285-0.692). These novel findings provide evidence suggesting that technology readiness and barriers must be better understood if older drivers are to accept and adopt AS.
format article
author Sherrilene Classen
Justin R. Mason
Seung Woo Hwangbo
Virginia Sisiopiku
author_facet Sherrilene Classen
Justin R. Mason
Seung Woo Hwangbo
Virginia Sisiopiku
author_sort Sherrilene Classen
title Predicting Autonomous Shuttle Acceptance in Older Drivers Based on Technology Readiness/Use/Barriers, Life Space, Driving Habits, and Cognition
title_short Predicting Autonomous Shuttle Acceptance in Older Drivers Based on Technology Readiness/Use/Barriers, Life Space, Driving Habits, and Cognition
title_full Predicting Autonomous Shuttle Acceptance in Older Drivers Based on Technology Readiness/Use/Barriers, Life Space, Driving Habits, and Cognition
title_fullStr Predicting Autonomous Shuttle Acceptance in Older Drivers Based on Technology Readiness/Use/Barriers, Life Space, Driving Habits, and Cognition
title_full_unstemmed Predicting Autonomous Shuttle Acceptance in Older Drivers Based on Technology Readiness/Use/Barriers, Life Space, Driving Habits, and Cognition
title_sort predicting autonomous shuttle acceptance in older drivers based on technology readiness/use/barriers, life space, driving habits, and cognition
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/d391a3d340244bc7aeb19e109e4a129e
work_keys_str_mv AT sherrileneclassen predictingautonomousshuttleacceptanceinolderdriversbasedontechnologyreadinessusebarrierslifespacedrivinghabitsandcognition
AT justinrmason predictingautonomousshuttleacceptanceinolderdriversbasedontechnologyreadinessusebarrierslifespacedrivinghabitsandcognition
AT seungwoohwangbo predictingautonomousshuttleacceptanceinolderdriversbasedontechnologyreadinessusebarrierslifespacedrivinghabitsandcognition
AT virginiasisiopiku predictingautonomousshuttleacceptanceinolderdriversbasedontechnologyreadinessusebarrierslifespacedrivinghabitsandcognition
_version_ 1718400019342557184