Addressing missing values in routine health information system data: an evaluation of imputation methods using data from the Democratic Republic of the Congo during the COVID-19 pandemic
Abstract Background Poor data quality is limiting the use of data sourced from routine health information systems (RHIS), especially in low- and middle-income countries. An important component of this data quality issue comes from missing values, where health facilities, for a variety of reasons, fa...
Guardado en:
Autores principales: | Shuo Feng, Celestin Hategeka, Karen Ann Grépin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d3a35b234ffb4c9b9c2e82128fa9708c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
por: Taesung Kim, et al.
Publicado: (2021) -
The Influence of Missing Data on Disabilities in Patients Treated with High-Dose Spinal Cord Stimulation: A Tipping Point Sensitivity Analysis
por: Lisa Goudman, et al.
Publicado: (2021) -
Contextual Imputation With Missing Sequence of EEG Signals Using Generative Adversarial Networks
por: Woonghee Lee, et al.
Publicado: (2021) -
An Ensemble Method for Missing Data of Environmental Sensor Considering Univariate and Multivariate Characteristics
por: Chanyoung Choi, et al.
Publicado: (2021) -
Multiple imputation procedures allow the rescue of missing data: An application to determine serum tumor necrosis factor (TNF) concentration values during the treatment of rheumatoid arthritis patients with anti-TNF therapy
por: SCHIATTINO,IRENE, et al.
Publicado: (2005)