Deep learning for classification of pediatric chest radiographs by WHO's standardized methodology.
<h4>Background</h4>The World Health Organization (WHO)-defined radiological pneumonia is a preferred endpoint in pneumococcal vaccine efficacy and effectiveness studies in children. Automating the WHO methodology may support more widespread application of this endpoint.<h4>Methods&...
Guardado en:
Autores principales: | Yiyun Chen, Craig S Roberts, Wanmei Ou, Tanaz Petigara, Gregory V Goldmacher, Nicholas Fancourt, Maria Deloria Knoll |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d3aeeb4c0d1d4d3785f5d9e10f7bb335 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automated abnormality classification of chest radiographs using deep convolutional neural networks
por: Yu-Xing Tang, et al.
Publicado: (2020) -
A lady with chest pain: Is there a clue in the chest radiograph?
por: Deepanjan Bhattacharya, et al.
Publicado: (2021) -
An Overview of Deep Learning Approaches in Chest Radiograph
por: Shazia Anis, et al.
Publicado: (2020) -
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
por: Po-Chih Kuo, et al.
Publicado: (2021) - WHO Manual of Diagnostic Imaging: Radiographic Technique & Projections