Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation
Simulating ultrafast quantum dissipation in molecular excited states is a strongly demanding computational task. Here, the authors combine tensor network simulation, entanglement renormalisation and machine learning to simulate linear vibronic models, and test the method by analysing singlet fission...
Guardado en:
Autores principales: | Florian A. Y. N. Schröder, David H. P. Turban, Andrew J. Musser, Nicholas D. M. Hine, Alex W. Chin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d3bfe9f28a474dacaa1376b861424f7e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Tensor-Network Method to Simulate Strongly Interacting Quantum Thermal Machines
por: Marlon Brenes, et al.
Publicado: (2020) -
Entanglement of formation and monogamy of multi-party quantum entanglement
por: Jeong San Kim
Publicado: (2021) -
Theoretical description and experimental simulation of quantum entanglement near open time-like curves via pseudo-density operators
por: Chiara Marletto, et al.
Publicado: (2019) -
A simple quantum voting scheme with multi-qubit entanglement
por: Peng Xue, et al.
Publicado: (2017) -
Stable iPEPO Tensor-Network Algorithm for Dynamics of Two-Dimensional Open Quantum Lattice Models
por: C. Mc Keever, et al.
Publicado: (2021)