Empirical assessment and comparison of neuro-evolutionary methods for the automatic off-line design of robot swarms
Off-line neuro-evolution produces robot swarms whose good performance in simulation does not often transfer to the real word. With an extensive empirical study, Hasselmann et al. substantiate overfitting as the dominant cause.
Enregistré dans:
Auteurs principaux: | Ken Hasselmann, Antoine Ligot, Julian Ruddick, Mauro Birattari |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d3ec80f81eaf4edb9cabe5d2a8fda60d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Neuro-Swarm heuristic using interior-point algorithm to solve a third kind of multi-singular nonlinear system
par: Zulqurnain Sabir, et autres
Publié: (2021) -
Path Planning of an autonomous Mobile Robot using Swarm Based Optimization Techniques
par: Ibraheem Kasim Ibraheem, et autres
Publié: (2017) -
A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics
par: Jules S. Jaffe, et autres
Publié: (2017) -
Chaotic-based particle swarm optimization algorithm for optimal PID tuning in automatic voltage regulator systems
par: N. Anwar, et autres
Publié: (2021) -
Numerical Analysis of Electrohydrodynamic Flow in a Circular Cylindrical Conduit by Using Neuro Evolutionary Technique
par: Naveed Ahmad Khan, et autres
Publié: (2021)