Chip Appearance Defect Recognition Based on Convolutional Neural Network
To improve the recognition rate of chip appearance defects, an algorithm based on a convolution neural network is proposed to identify chip appearance defects of various shapes and features. Furthermore, to address the problems of long training time and low accuracy caused by redundant input samples...
Guardado en:
Autores principales: | Jun Wang, Xiaomeng Zhou, Jingjing Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d3ff6b6109ae4d20bd7ea26a80a5efae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Coastal Image Classification and Pattern Recognition: Tairua Beach, New Zealand
por: Bo Liu, et al.
Publicado: (2021) -
Deep Convolutional Neural Network Optimization for Defect Detection in Fabric Inspection
por: Chao-Ching Ho, et al.
Publicado: (2021) -
A comparison of convolutional neural networks for Kazakh sign language recognition
por: Chingiz Kenshimov, et al.
Publicado: (2021) -
Kohonen Network-Based Adaptation of Non Sequential Data for Use in Convolutional Neural Networks
por: Michał Bereta
Publicado: (2021) -
Crack recognition automation in concrete bridges using Deep Convolutional Neural Networks
por: Zoubir Hajar, et al.
Publicado: (2021)